Первичная структура белка представлена в виде. Первичная структура белка


Объединение аминокислот через пептидные связи создает линейную полипептидную цепь, которая называется первичной структурой белка

Учитывая, что в синтезе белков принимает участие 20 аминокислот и средний белок содержит 500 аминокислотных остатков, то можно говорить о невообразимом количестве потенциально возможных белков. В организме человека обнаружено около 100 тысяч различных белков.

К примеру, 2 аминокислоты (аланин и серин) образуют 2 пептида Ала-Сер и Сер-Ала; 3 аминокислоты дадут уже 6 вариантов трипептида; 20 аминокислот – 1018 различных пептидов длиной всего 20 аминокислот (при условии, что каждая аминокислота используется только один раз).

Самый большой из известных в настоящее время белков - титин - является компонентом саркомеров миоцита, молекулярная масса его различных изоформ находится в интервале от 3000 до 3700 кДа. Титин камбаловидной мышцы человека состоит из 38138 аминокислот.

Первичная структура белков, т.е. последовательность аминокислот в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению аминокислотного состава и, следовательно, структуры синтезируемого белка.

Участок белковой цепи длиной в 6 аминокислот (Сер-Цис-Тир-Лей-Глу-Ала)
(пептидные связи выделены желтым фоном, аминокислоты - рамкой)

Если изменение последовательности аминокислот носит не летальный характер, а приспособительный или хотя бы нейтральный, то новый белок может передаться по наследству и остаться в популяции. В результате возникают новые белки с похожими функциями. Такое явление называется полиморфизм белков.

Например, при серповидноклеточной анемии в шестом положении β-цепи гемоглобина происходит замена глутаминовой кислоты на валин . Это приводит к синтезу гемоглобина S (HbS) – такого гемоглобина, который в дезоксиформе полимеризуется и образует кристаллы. В результате эритроциты деформируются, приобретают форму серпа (банана), теряют эластичность и при прохождении через капилляры разрушаются. Это в итоге приводит к снижению оксигенации тканей и их некрозу.

Для многих белков обнаруживается ярко выраженный консерватизм структуры. Например, гормон инсулин у человека отличается от бычьего только на три аминокислоты, от свиного – на одну аминокислоту (аланин вместо треонина).

Возникновение групп крови АВ0 связано с тремя вариантами фермента, осуществляющего присоединение к олигосахариду мембран эритроцитов либо N-ацетилгалактозы (группа А), либо галактозы (группа В), либо фермент не присоединяет дополнительные сахаридные группы (группа 0).

Последовательность и соотношение аминокислот в первичной структуре определяет формирование вторичной , третичной и четвертичной структур.

Строение белка может быть представлено одним из четырех вариантов. Каждый вариант обладает собственными особенностями. Так, существует четвертичная, троичная, вторичная и первичная

Последний в этом списке уровень представляет собой линейную полипептидную цепь из аминокислот. Аминокислоты соединяются друг с другом пептидными связями. Первичная является простейшим уровнем организации молекулы. Посредством ковалентных пептидных связей между альфа-аминогруппой в одной аминокислоте и альфа-карбоксильной группой в другой обеспечивается высокая стабильность молекулы.

При формировании в клетках пептидных связей активируется сначала карбоксильная группа. После происходит соединение с аминогруппой. Приблизительно так же осуществляется полипептидный лабораторный синтез.

Пептидная связь, представляющая собой повторяющийся фрагмент полипептидной цепи, обладает рядом особенностей. Под воздействием этих особенностей не только формируется первичная структура белка. Они влияют и на высшие организационные уровни полипептидной цепи. Среди основных отличительных черт выделяют копланарность (способность всех атомов, которые входят в пептидную группу, находиться в одной плоскости), трансположение заместителей относительно С-N-связи, свойство существовать в 2-х резонансных формах. К особенностям пептидной связи относят также способность к формированию водородных связей. При этом от каждой пептидной группы может образовываться по две водородные связи с прочими группами (пептидными в том числе). Однако существуют исключения. К ним относят пептидные группы с аминогруппами гидроксипролина или пролина. Они могут формировать только лишь одну Это оказывает воздействие на образование вторичной белковой структуры. Так, на участке, где располагается гидроксипролин или пролин, пептидная цепь легко изгибается, в связи с тем, что нет второй водородной связи, которая удерживала бы ее (как обычно).

Название пептидов формируется из названий аминокислот, входящих в них. Дипептид дают две аминокислоты, трипептид - три, тетрапептид - четыре и так далее. В каждой полипептидной цепи (или пептиде) любой длины присутствует N-концевая аминокислота, в которой содержится свободная аминогруппа, и С-концевая аминокислота, в которой присутствует свободная карбоксильная группа.

Свойства белков.

При изучении этих соединений ученых интересовало несколько вопросов. Исследователи, прежде всего, стремились выяснить размеры, определить форму и массу молекул белков. Следует отметить, что это были достаточно сложные задачи. Трудность состояла в том, что определение по увеличению растворов белков (как это осуществляется у прочих веществ) невозможно, ввиду того, что белковые растворы кипятить нельзя. А определение показателя в соответствии с понижением температуры замерзания результаты дает неточные. Кроме того, белки в чистом виде никогда не встречаются. Однако при помощи разработанных методов было установлено, что колеблется в пределах от 14 до 45 тысяч и больше.

Одной из важных характеристик соединений является фракционное высаливание. Этот процесс представляет собой выделение белков из растворов после прибавления соляных растворов с различными концентрациями.

Еще одним немаловажной характеристикой является денатурация. Этот процесс происходит при осаждении белков тяжелыми металлами. Денатурация представляет собой потерю натуральных свойств. Этот процесс предполагает разные превращения молекулы, кроме разрыва полипептидной цепи. Другими словами, первичная структура белка при денатурации остается неизменной.

Первый этап в определении первичной структуры белков заключается в качественной и количественной оценке аминокислотного состава данного индивидуального белка.

Кислотный гидролиз белка

Для определения аминокислотного состава необходимо провести разрушение всех пептидных связей в белке. Анализируемый белок гидролизуют в 6 мол/л НС1 при температуре около 110 °С в течение 24 ч. В результате разрушаются пептидные связи в белке, а в гидролизате присутствуют только свободные аминокислоты

Разделение аминокислот с помощью ионообменной хроматографии Смесь аминокислот, полученных кислотным гидролизом белков, разделяют в колонке с катионообменной смолой.

Количественный анализ полученных фракций. нагреваютотдельные фракции аминокислот с нингидрином, образующим соединение красно-фиолетового цвета. Интенсивность окраски в пробе пропорциональна количеству находящейся в ней аминокислоты.

2. Определение аминокислотной последовательности в белке

Определение N-концевой аминокислоты в белке и последовательности аминокислот в олигопептидах

Изучение первичной структуры белков имеет важное общебиологическое и медицинское значение. Изучая порядок чередования аминокислотных остатков в индивидуальных, можно выявить общие фундаментальные закономерности формирования пространственной структуры белков.многие генетические болезни - результат нарушения в аминокислотной последовательности белков. Информация о первичной структуре нормального и мутантного белка может быть полезна для диагностики и прогнозирования развития заболевания.

Установление первичной структуры белков включает 2 основных этапа:

определение аминокислотного состава изучаемого белка;

аминокислотной последовательности в белке.

Например, при серповидноклеточной анемии в шестом положении β-цепи гемоглобина происходит замена глутаминовой кислоты на валин . Это приводит к синтезу гемоглобина S (HbS ) – такого гемоглобина, который в дезоксиформеполимеризуется и образует кристаллы. В результате эритроциты деформируются, приобретают форму серпа, теряют эластичность и при прохождении через капилляры разрушаются. Это в итоге приводит к снижению оксигенации тканей и их некрозу.

Последовательность и соотношение аминокислот в первичной структуре определяет формирование вторичной , третичной и четвертичной структур.

8 . Вторичная структура белка –пространственная структура, образующаяся в результате взаимодействий между функциональными группами, входящими в состав пептидного остова.регулярные структуры двух типов: а-спираль и б-структура.

Вторичная структура образуется только при участии водородных связей между пептидными группами: атом кислорода одной группы реагирует с атомом водорода второй, одновременно кислород второй пептидной группы связывается с водородом третьей и т.д.

α-Спираль

пептидный остов закручивается в виде спирали за счёт образования водородных связей между атомами кислорода карбонильных групп и атомами азота аминогрупп. Водородные связи ориентированы вдоль оси спирали. На один виток а-спирали приходится 3,6 аминокислотных остатка.

В образовании водородных связей участвуют практически все атомы кислорода и водорода пептидных групп. В результате?-спираль "стягивается" множеством водородных связей. связи относят к слабых, их количество обеспечивает максимально возможную стабильность?-спирали. гидрофильность?-спиралей уменьшается, а их гидрофобность увеличивается.

Спиральная структура - наиболее устойчивая конформация пептидного остова, отвечающая минимуму свободной энергии. В результате образования?-спиралей полипептидная цепь укорачивается.

Радикалы аминокислот находятся на наружной стороне?-спирали и направлены от пептидного остова в сторонынекоторые из них могут нарушать формирование?-спирали. К ним относят:

пролин. Его атом азота входит в состав жёсткого кольца, что исключает возможность вращения вокруг -N-CH- связи. Кроме того, у атома азота пролита, образующего пептидную связь с другой аминокислотой, нет атома водорода. В результате пролин не способен образовать водородную связь в данном месте пептидного остова, и?-спиральная структура нарушается. Обычно в этом месте пептидной цепи возникает петля или изгиб;

участки, где последовательно расположены несколько одинаково заряженных радикалов, между которыми возникают электростатические силы отталкивания;

участки с близко расположенными объёмными радикалами, механически нарушающими формирование?-спирали, например метионин, триптофан

β-Складчатый слой Структура формируется за счёт образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными цепями, ?-Структура образует фигуру, подобную листу, сложенному "гармошкой" Когда водородные связи образуются между атомами пептидного остова различных полипептидных цепей, их называют межцепочечными связями. Водородные связи, возникающие между линейными участками внутри одной полипептидной цепи, называют внутрицепочечными. В?-структурах водородные связи расположены перпендикулярно полипептидной цепи.

Если связанные полипептидные цепи направлены противоположно, возникает антипараллельная?-структура, если же N- и С-концы полипептидных цепей совпадают, образуется структура параллельного?-складчатог

9. Третичная структура – это укладка полипептидной цепи в глобулу ("клубок"). Четкой границы между вторичной и третичной структурами провести нельзя, в основе третичной структуры лежат стерические взаимосвязи между аминокислотами, отстоящими далеко друг от друга в цепи. Благодаря третичной структуре происходит еще более компактное формирование цепи. В стабилизации третичной структуры белка принимают участие:

ковалентные связи(между двумя остаткамицистеина-дисульфидные мостики);

ионные связимежду противоположно заряженными боковыми группами аминокислотных остатков;

водородные связи;

гидрофильно-гидрофобныевзаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярныегидрофильныебоковые группы.

Связь с первичной структурой. Третичная структура в значительной степени предопределенапервичной структурой. Усилия по предсказанию третичной структуры белка основываясь на первичной структуре известна как задачапредсказания структуры белка. Однако, окружающая среда, в которой белок сворачивается существенно определяет конечную форму, но обычно непосредственно не принимается во внимание текущими методами предсказания. Большинство таких методов полагаются на сравнения с уже известными структурами, и таким образом включают окружающую среду косвенно.Супервторичная структура белков. сравнение конформаций разных по структуре и функциям белков выявило наличие у них похожих сочетаний элементов вторичной структуры. Такой специфический порядок формирования вторичных структур называют супервторичной структурой белков.она формируется за счёт межрадикальных взаимодействий. Определённые характерные сочетания а-спиралей и б-структур часто обозначают как "структурные мотивы".