Термоядерное оружие. Создается ядерное оружие четвертого поколения Царь-бомба — термоядерная бомба ссср



Теоретическое вступление. Термоядерное оружие, как не трудно догадаться, основано на организации термоядерных реакций синтеза атомных ядер. Из всех известных естествоиспытателям реакций протекающих в окружающем мире, термоядерные реакции обладают наибольшим выделением удельной энергии, т.е. энергии, приходящейся на единицу массы.
Учёными установлено, что в природе термоядерные процессы распространены достаточно широко, в частности, они являются источником энергии звёзд. Наше Солнце - не исключение. В наше время Солнце является обычной звездой, в ядре которой протекают термоядерные реакции синтеза ядер гелия из ядер водорода.
О..
. ГИГАНТЫ N
СВЕРХГИГАНТЫ
Ежесекундно Солнце на реакцию синтеза расходует 6-1011 кг водорода, с выходом 4-109 кг гелия. По прогнозам астрофизиков наблюдаемое сейчас состояние динамического равновесия нашей эволюционирующей звезды продлится около 5 млрд. лет.
БЕЛЫЕ ** КАРЛИКИ.
Так, что поводов для тактического беспокойства пока нет. Интенсивность термоядерных реакций можно проследить на диаграмме Герцшпрунга - Рессела (рис.
Рис. 6.32. Эволюция звёзд в зависимости от интенсивности ядерных реакций
10 000 6 000 ТЕМПЕРАТУРА ПОВЕРХНОСТИ, К
| м
|F| G I
  1. , где показана зависимость светимости звёзд от их температуры, которая одновременно является и показателем спектрального класса.
Эту зависимость можно выразить уравнением, связывающим светимость и размеры звезды
L = R52.
При образовании одного ядра гелия из двух ядер водорода выделяется энергия, равная 24 МэВ. Напомним, что 1 эВ - это энергия которую приобретает электрон, проходя разность потенциалов, равную 1 В, 1 эВ « 1,6-10 - 19 Дж. В 1 кг дейтерия, изотопа водорода содержится 1,5-1026 пар соединяющихся ядер.
Энергию, выделяющуюся из 1 кг дейтерия при синтезе гелия можно определить следующим образом
Е1 = 1,5 -1026 - 24 = 3,6 -1027МэВ = 1,62 -108 КВт - час.
Как известно дейтерий в малых концентрациях содержится в воде. В пересчёте на среднюю концентрацию дейтерия из 1 л воды потенциально возможно получить энергию порядка 6100 КВт-час., что эквивалентно сжиганию 672 литров бензина, при расходовании на реакцию окисления около восьми тонн кислорода. Для слияния двух ядер водорода в одно ядро гелия необходимо, чтобы эти положительно заряженные ядра преодолели кулоновские силы отталкивания
r 1 Ze1 - Ze1 r
FK = -Lr .
4П880 r
Для слияния исходных ядер водорода необходимо их сблизить на расстояние соизмеримое с размерами ядра, т.е. на « 3-1015 м. На этом расстоянии потенциальная энергия двух положительных зарядов (ядер водорода) будет равна
1 Ze Ze
П = e= 7,68 10-14 Дж = 5 105эВ.
4П880 Г
Две заряженные частицы могут сблизится на расстояние, соизмеримое с размерами ядра в том случае, если они будут иметь кинетическую энергию, превосходящую или равную половине потенциальной энергии взаимодействия. Из молекулярной физики известно, что кинетическая энергия структурных элементов материи при их хаотическом тепловом движении определяется температурой
2 -л
к 0 = mui.=2k,t,
0 2 2
что даёт возможность оценить соответствующие термоядерному синтезу температуры
13 0,5Кgt;П; -Пgt;Кgt;- kBT,
2 2 B
T.і. 7"68-10-‘‘ s 1,83-10* 0K.
-23
3kB 3 -1,4 -10
Температуры всего на два порядка ниже реализуются в течение короткого времени, при атомных взрывах и внутри звёзд. По последним данным космофизиков температура Солнца лежит в пределах 1,2-107 - 1,5-107 0К. При таких относительно низких температурах возможен прямой захват протона протоном
H1 + H1 ^ He2 + e+1 +v0,
При этом ядро He2 является неустойчивым и быстро превращается за счёт по- зитронного распада в тяжёлый водород. Позитрон, сталкиваясь со своим антиподом - электроном, аннигилирует, превращаясь в излучение
H2 + H1 ^ He2 + у (5,5МэВ),
Далее начинается взаимодействие нестабильных ядер гелия
He2 + He2 ^ He2 + 2H1 (12,8МэВ), которые превращаются в стабильную модификацию гелия. При превращении 1 кг водорода в 883 г гелия, Am . 7 г вещества трансформируется в соответствии с уравнением Оливера Хевисайда в излучение
E = Am - c° = 7-10-3 - 9-1016 = 6,3-1014 Дж.
Столько энергии освобождается при полном окислении 1,6-1010 кг автомобильного бензина. Естественно такой энергетический выход не мог не заинтересовать венец Природы - человечество, которое в лучших традициях своего эволюционного пути нашло таки способ приспособить всю эту энергетическую эффективность исключительно для истребления себе подобных и иже с ними.
Дефект масс, открытый при исследованиях расщепления ядер, означает, в частности, что масса любого стабильного ядра меньше суммы масс составлявших его протонов и нейтронов. Например, масса изотопа гелия He42 меньше суммы масс двух протонов и двух нейтронов. Следовательно, если два протона и два нейтрона привести в соприкосновение, чтобы образовалось ядро гелия, то это слияние сопровождалось бы уменьшением массы. Уменьшение массы на Am проявляется в выделении огромного удельного количества энергии (AE = Amc2). Образование ядер в процессе объединения отдельных протонов и нейтронов или легких ядер как раз и называется ядерным синтезом.
Для выяснения подробностей энергетического аспекта этого процесса обратимся вновь к данным рис.4.14, где приведена кривая изменения удельной энергии связи, т. е. энергия в расчете на нуклон. В силу отрицательного знака дефекта масс, слияние ядер тяжёлых элементов (правая ветвь кривой) будет сопровождаться выделением энергии.
Процесс будет в высокой степени эндотермическим, т.е. для его осуществления требуются значительные энергетические затраты. Реакция синтеза двух ядер урана, например, возможна только в том случае, если объединяющиеся ядра будут обладать, по меньшей мере, такой же энергией, сколько её высвобождается при делении каждого из них. Получение сверхтяжелых ядер весьма энергоёмкое и дорогостоящее предприятие, не возможное в настоящее время.
Синтез легких ядер, наоборот, приводит к такому дефекту масс, который связан с высвобождением значительных энергий связи. При объединении двух лёгких ядер имеет место экзотермический процесс.
При слиянии двух протонов и двух нейтронов в ядро гелия мы получаем выигрыш в энергии 28,2 МэВ, а для 1 кг синтезированного гелия это составит около 2-10 8 кВт-ч. Даже по сравнению с энергетикой деления ядер - впечатляет, весьма.
На первый взгляд, методика осуществления реакции синтеза ядер, кажется простой как амёба, действительно, чего проще, соединили два ядра дейтерия и, вот он - гелий:
D2 + D2 ^ He2 + 23,64 МэВ, причём, появление каждого нового ядра сопровождается выделением энергии 23,64 МэВ. Естественно предположить, что эта энергия равна разности между полной энергией связи ядра атома гелия (28,2МэБ), удерживающей вместе четыре нуклона, и полной энергией связи двух ядер тяжелого водорода (по 2,28МэВ каждый). Существует ряд других реакций, которые используются в работах по термоядерному синтезу. Они тоже внешне до неприличия просты
D2 + D2 ^ He2 + 3,27 МэВ,
D2 + D2 ^ T° + р1 + 4,03 МэВ,
Li36 + n0 ^ T° + He4 + 4,6Мэв.
Слияние, например, двух ядер тяжелого водорода возможно, если их удастся сблизить до расстояния действия ядерных сил, т.е. до =3-10 - 15м. А для этого необходимо преодолеть кулоновское отталкивание протонов в ядрах. Элементарный подсчет показывает, что на расстояниях такого масштаба электростатическая энергия отталкивания равна = 0,1Мэв.
Единственное препятствие в организации термоядерной реакции в домашних условиях, состоит, в преодолении кулоновского отталкивания, поскольку протоны и другие легкие ядра всегда положительно заряжены.
Как показывают расчеты, два встречных сталкивающихся протона должны иметь кинетическую энергию порядка 250 кэВ каждый. Эту энергию невозможно получить путем обычного нагревания, так как даже при температуре 107 0К энергия частицы едва достигает только =1 кэВ. А нагревать надо до температур порядка 109 0К, чтобы энергии движения частиц хватило на преодоление взаимного отталкивания ядер. При Т = 10 К они вступают в непосредственный контакт, и происходит объединение ядер. Реальная температура, необходимая для поддержания реакций синтеза несколько ниже расчётной и составляет порядка 108 0К, что обусловлено явлением туннельного эффекта.
Кроме того, согласно функции распределения Максвелла, многие частицы обладают энергиями значительно превышающими среднее значение (E) = kT.
После второй мировой войны стало ясно, что при взрыве атомной бомбы имеют место температуры около 108 0К. Возникла идея использовать атомную бомбу в качестве запала для водородной бомбы, реализующей ядерную реакцию синтеза.
Получить неуправляемое выделение колоссальных количеств энергии при взрыве водородной бомбы, после того как уже набили руку на обычных ядерных взрывах, оказалось достаточно просто.
Термоядерная бомба, по сути, состоит из атомной бомбы и термоядерного заряда. Внутри оболочки, заполненной легкими элементами, способными вступать в реакцию синтеза, взрывается атомная бомба. На очень короткое время - миллионные доли секунды, температура внутри еще целой оболочки достигает нескольких сотен миллионов градусов (108 0К), а давление - сотен миллиардов атмосфер.

ЕІри таких экстремальных условиях начинается слияние ядер дейтерия и трития в ядро гелия
d2 + т° ^ He2 + n0, выделяется огромная энергия в очень короткое время, т.е. происходит взрыв (рис.
  1. . Энергия, выделяющаяся в реакции ядерного синтеза в расчете на данную массу горючего, больше, чем при делении ядра. Кроме того, при ядерном синтезе не столь остра проблема захоронения радиоРис. 6.33. Синтез ядер гелия активных отходов.
В качестве горючего термоядерного реактора можно использовать дейтерий, в изобилии встречающийся в воде океанов. Из 60 литров океанской воды можно извлечь около 1 г дейтерия.
Однако осуществить управляемый термоядерный синтез, т.е. не взрывоподобный отвод энергии технически оказалось весьма сложной задачей. Всё дело упёрлось в создание и поддерживание достаточно продолжительное время необходимых для ядерного синтеза высоких температур.
Любое вещество при обсуждаемых температурах представляет собой особую среду, которая состоит из ядер и несвязанных с ними электронов. Это состояние вещества называется плазмой.
Если посмотреть в соответствующий раздел справочника по физическим свойствам веществ, то можно обнаружить, что из всего их множества наибольшей температурой плавления обладает карбид гафния Тпл = 4000 0К, даже в нём «содержать» высокотемпературную среду не представляется возможным.
Обычные материалы испаряются при температуре в лучшем случае 104 0К, следовательно, они не пригодны для термоядерных технологий. Но Природа - Мать распорядилась так, что плазма, имея огромное число свободных электронов, может пропускать электрический ток и реагировать на внешнее магнитное поле.
Водородная бомба. По одной из циркулирующих в прессе версий, история первого практического использования термоядерной реакции начинается в 1941г. Японский физик Хагивара из университета г. Киото, который не разбомбили в
  1. г. американцы по причине плохой видимости, в лекции своим студентам высказал идею о возможности возбуждения термоядерной реакции между ядрами водорода в условиях, создаваемых взрывом атомной бомбы на основе U235.

Рис 6.35. Клаус Фукс
В сентябре 1941 г. по другую сторону океана Энрико Ферми аналогичную идею высказал в беседе с Эдвардом Теллером (рис.6. 34). Идея Ферми захватила учёного, который стал последовательным и напористым инициатором разработки оружия такого типа.
Надо сказать, что эта идея обсуждалась и на закрытых семинарах физиками СССР уже сразу после развёртывания атомного проекта, по крайней мере не для Курчатова, не для Флёрова и других ядерщиков такая идея не являлась новостью.
До поры до времени просто не хватало времени и сил для её разработки на систематической основе. Развернулась атомная гонка, все усилия весьма ограниченных ресурсов, как интеллектуальных, так и материальных концентрировались на ней.
Идея «классического супера» была оформлена в виде набросков в Лос-Аламосе к концу 1945 г. Весной
  1. г. Клаус Фукс предложил при использовании в качестве запала атомной бомбы вынести смесь из дейтерия и трития и первичного взрывателя в прогреваемый излучением отражатель из окиси бериллия.
По сути это была идея ионизационной имплозии, которая должна была обеспечить условия термоядерного зажигания. Для удержания излучения в объёме заряда он закрывался непрозрачным кожухом.


Рис. 6.36. Схема бомбы Теллера - Улама
В 1946 г. произошло рождение идеи радиационной имплозии. Схема предложенная Клаусом Фуксом, стала основой будущей конфигурации Теллера - Улама, которая вошла вовсе современные хрестоматии по термоядерной технике (рис. 6.36).
Устройство состояло из двух функциональных частей В едином корпусе располагался атомный заряд в виде плутониевой сферической бомбы, который обеспечивал при срабатывании высокие значения температуры и давления и, собственно, термоядерного горючего, окрашенного на рисунке в вишнёвый цвет.
Современные специалисты по ядерной физике признают, что, опережающие время идеи немецкого физика Фукса стали основой многих последующих конструкций термоядерных устройств. Фукс и Фон - Нейман 28 мая 1946 г. подали заявку на изобретение новой схемы инициирующего отсека с использованием радиационной имплозии.
Только спустя пять лет в США полностью осознали огромный идейный потенциал всех предложений Фукса. В конце августа 1946 г. неутомимый Теллер обнародовал отчёт, в котором развил новую схему термоядерной бомбы под романтическим названием «Будильник».
Новая версия бомбы по предложению Теллера должна была состоять из чередующихся сферических слоёв делящихся материалов и термоядерного горючего, дейтерия, трития и их химических соединений.
Цепная реакция деления, возникшая в одном из слоёв, должна была за счёт большого количества быстрых нейтронов инициировать процессы деления в соседних слоях, что должно повышать энерговыделение, особенно тепловое.
Результат атомного взрыва должен был вызвать уплотнение активных делящихся элементов, т.е. объёмное сближения ядер исходного вещества. Плотность термоядерного горючего увеличивалась с возрастанием скорости термоядерных реакций.
Однако термоядерный заряд по этой схеме получался недопустимо габаритным, не позволяющим даже теоретически рассматривать его практическое использование. Некоторое время проекты «Классический супер» и «Будилькик» разрабатывали специалистами Лос-Аламоса параллельно.
В январе 1950 г. президент США Гарри Трумэн выступил с публичным заявлением об официальном поручении учёным из Лос-Аламоса разработки водородной бомбы. Естественно, что работы в этом направлении стали проводится более динамично.


Рис. 6. 37. Термоядерный заряд Mike
В сентябре 1951 г. началась подготовка термоядерного заряда «Майк» к испытаниям, которые успешно были проведены 1 ноября 1952 г. Мощность взрыва составила 10 Мт в тротиловом эквиваленте. Это даже с натяжкой трудно было назвать оружием (рис. 6.37).
Полнейшая нетранспорта-
бельность, габариты соответствовали приличных размеров двухэтажному строению. Продукты термоядерного деления поддерживались при температуре жидкого азота. Термоядерный заряд, в этой связи, был снабжен стационарными рефрижераторными установками, способными во время монтажа и испытаний поддерживать сверхнизкие температуры.
В СССР до 1945 г. возможности официально заниматься вопросами термоядерного синтеза, кроме рассмотрения теоретических аспектов, небыло. Страна воевала и в ускоренных темпах создавала атомную бомбу, напрягаясь из всех мыслимых и немыслимых сил.
Первый официальный документ по термоядерному оружию относится к 22 сентября 1945 г., его подготовил на имя И.В. Курчатова учёный - ядерщик Яков Ильич Френкель, где теоретически обосновал возможность протекания термоядерных реакций у условиях взрыва атомной бомбы: «....Представляется интересным использовать высокие - миллиардные - температуры, развивающиеся при взрыве атомной бомбы, для проведения синтетических реакций (например, образование гелия из водорода), которые являются источником энергии звёзд и которые могли бы ещё более повысить энергию, освобождаемую при взрыве основного вещества (уран, висмут, и т.д.)».


Рис. 6.38 Я.И. Френкель
Направляя записку Курчатову, учёный не мог знать, что вопросы термоядерных реакций уже давно обсуждаются создателями атомного оружия и что Курчатов владеет полной информацией о состоянии дел по термоядерной тематике в Лос-Аламосе.
В сентябре 1945 г. по каналам внешней разведки Курчатову поступил материал об американских работах по комбинированию атомной бомбы пушечного типа на основе U°°5 с отражателем из окиси бериллия, промежуточной камеры с дейтерий тритиевой смесью и цилиндра с жидким дейтерием.
Открытая информация о возможности создания сверхбомбы появилось в Британской газете «Таймс» 19 октября 1945 г. за долго до испытания термоядерных зарядов в США.
Естественно, что такие сообщения не могли остаться без внимания высших руководителей СССР и ведущих учёных, занятых в атомных программах. Л.П. Берия поручил дипломатам уточнить информацию.


Обратились к Нильсу Бору, который только что вернулся в Данию из США. Бор посчитал необходимым всех успокоить: «Что значит сверхбомба? Это или бомба большего веса, чем уже изобретенная, или бомба, изготовленная из какого- то нового вещества. Что же, первое возможно, но бессмысленно, так как, повторяю, разрушительная сила бомбы и так очень велика, а второе, я думаю, что нереально». Несмотря на несомненный авторитет в области атомной физики, Бору у нас в стране не поверили.
По настоянию Берии руководитель атомной программы Курчатов дал поручение ведущим специалистам Ю.Б. Харитону, Я.Б.
Зельдовичу, И.И. Гуревичу и И.Я. Померанчу- ку рассмотреть в теоретическом плане вопрос о возможности освобождения энергии лёгких элементов и представить свои выводы на заседании Технического
Тем не менее И. В. Курчатов обратился к Ю.Б. Харитону с поручением рассмотреть Риа 6.39. Я.Б. Зельдович
вместе с И. И. Гуревичем, Я. Б. Зельдовичем и
И. Я. Померанчуком вопрос о возможности освобождения энергии лёгких элементов и представить соображения по этому вопросу на заседании Технического совета Специального комитета.
Соображения И.И. Гуревича, Я.Б. Зельдовича, И.Я. Померанчука и Ю.Б. Харитона были изложены в отчёте „Использование ядерной энергии лёгких элементов“, материалы которого были заслушаны на заседании Технического совета 17 декабря 1945 года.
Докладчиком был Я. Б. Зельдович. В основе подхода к решению проблемы в отчёте и докладе было представление о возможности возбуждения ядерной детонации в цилиндре с дейтерием при осуществлении неравновесного режима горения.
Рассмотренный на заседании отчёт полностью опубликован в журнале «Успехи физических наук» № 5 за 1991 год. По докладу Я.Б. Зельдовича на заседании Технического совета 17 декабря 1945 года было принято решение, которое касалось только измерений сечений реакций на лёгких ядрах и не содержало поручений, относящихся к организации и проведению расчётно-теоретических исследований и работ по сверхбомбе.
Тем не менее в июне 1946 года группа теоретиков Института химической физики АН СССР в составе А. С. Компанейца и С.П. Дьякова под руководством Я.Б. Зельдовича в рамках программы исследований вопросов ядерного горения и взрыва начала теоретическое рассмотрение возможности освобождения ядерной энергии лёгких элементов.
В то время, как группа Я.Б. Зельдовича проводила свои исследования, в СССР в 1946-1947 годах продолжали поступать разведывательные сообщения информационного характера, касающиеся работ в США по сверхбомбе. К ним добавились и новые сообщения в открытой печати, в том числе статья Э. Теллера в февральском номере «Бюллетеня ученых-атомщиков» за 1947 год.
28 сентября 1947 года в Лондоне состоялась первая встреча К. Фукса, вернувшегося из США в Англию, с представителем советской разведки А.С. Феклисо- вым. А. С. Феклисов обратился к К. Фуксу с 10-ю вопросами, первый из которых относился к сверхбомбе.
Из отчёта о встрече А.С. Феклисова с К. Фуксом 28 сентября 1947 года следует, что К. Фукс устно сообщил о том, что теоретические работы по сверхбомбе проводятся в США под руководством Э. Теллера и Э. Ферми в Чикаго.
К. Фукс описал некоторые конструкционные особенности сверхбомбы и принципы её работы, отметил использование наряду с дейтерием трития. К. Фукс устно сообщил, что к началу 1946 года Э. Ферми и Э. Теллер доказали, что такая сверхбомба должна эффективно действовать. Однако А.С. Феклисов, не будучи физиком, смог воспроизвести конструкционные особенности сверхбомбы и её работу весьма приближённо. Начались ли в США практические работы по созданию сверхбомбы и каковы их результаты, К. Фуксу было неизвестно.
В июне 1948 г. Советом Министров СССР было принято постановление № 1989 - 773 «О дополнении плана работ КБ-11» в котором, в частности, предписывалось лаборатории ядерной физики, совместно с Физическим институтом АН СССР провести теоретическую и экспериментальную проверку возможностей создания водородной бомбы, которая в документах получила шифр РДС-6.


С материалами по американским разработкам был знаком только И.В. Курчатов, который не стад знакомить с ними своих сотрудников.
Чтобы не стеснять свободы поиска альтернативных решений. И они не замедлили последовать.
Сахаров Андрей Дмитриевич совместно с Яковом Борисовичем Зельдовичем предложили схему комбинированной бомбы, в которой дейтерий используется в смеси с U238. Другими словами, независимо от Э. Тейлера отечественные учёные пришли к идее гетерогенной бомбы, как она стала называться среди разработчиков «Слойка», в которой предполагалось использовать принцип ионизационного сжатия термоядерного горючего.
Игорь Евгеньевич Тамм, руководитель А.Д. Сахарова по аспирантуре, в ноябре 1948 г. обратился с письмом к директору Физического института АН СССР Вавилову С.И., в котором сообщал, что руководимая им группа физиков нашла принципиальную возможность нового способа использования детонации дейтерия, основанного на особом способе его сочетания с тяжёлой водой и природным ураном U238. В этом же письме предлагалось для осуществления термоядерной реакции использовать схему Li6 + n = T + He4 + 4,8 МэВ,


Рис. 6.41. И.Е. Тамм
где в качестве термоядерного оружия используется дейтерит лития-6.
Сахаровым была предложена схема дополнительного заряда плутония для предварительного сжатия «слойки». Это был принцип двухступенчатой конструкции термоядерной бомбы.
В США, как известно, 1 марта 1954 г. был проведен мощный термоядерный взрыв, свидетельствующий, что термоядерная программа конкурентов из теоретической стадии перешла в практическую плоскость.
Это придало нашим учёным и политикам новые силы. Буквально в первых числах апреля 1954 г. В КБ-11 был открыт новый принцип построения термоядерной бомбы.
Разработка технического задания на новое термоядерное изделие РДС-37. В июле 1955 г. был выпущен отчёт с обоснованием конструкции изделия РДС-37.
Авторами отчёта являлись: Е.Н. Аврорин, В. А. Александров, Ю.Н. Бабаев, Г. А. Гончаров, Я. Б. Зельдович, В. Н. Климов, Г. Е. Клинишов, Б. Н. Козлов, Е. С. Павловский, Е.М. Рабинович, Ю.А. Романов, А.Д. Сахаров, Ю.А. Трутнев, В.П. Феодори- тов, М.П. Шумаев, В.Б. Адамский, Б. Д. Бондаренко, Ю.С. Вахрамеев, Г.М. Ган- дельман, Г.А. Дворовенко, Н.А. Дмитриев, Е.И. Забабахин, В.Г. Заграфов, Т.Д. Кузнецова, И.А. Курилов, Н.А. Попов, В.И. Ритус, В.Н. Родигин, Л.П. Феоктистов, Д.А. Франк-Каменецкий, М.Д. Чуразов. Среди авторов были математики: И.А. Адамская, А. А. Бунатян, И.М. Гельфанд, А. А. Самарский, К. А. Семендяев, И.М. Халатников, которые под руководством М.В. Келдыша и А.Н. Тихонова проделали огромную работу по теоретическому обеспечению проекта.


Рис. 6.42. Изделие РДС-37
В ноябре 1955 г. было проведено
предварительное испытание одноступенчатого термоядерного устройства, а 22 ноября 1955 г. бл успешно проведён подрыв двухступенчатого термоядерного заряда, оформленного как авиационная бомба (рис. 6.42).
Как сказал после испытания А.Д.
Сахаров: «Испытание было завершением многолетних усилий, триумфом, открывшим пути к разработке целой гаммы изделий с разнообразными высокими характеристиками (хотя при этом встретятся ещё не раз неожиданные трудности)».
Таким образом был успешно завершён очередной этап создания термоядерного оружия, при этом достигнуты следующие результаты:
  • Учёные СССР первыми в мировой практике (1952 г) применили высокоэффективное термоядерное горючее дейтерид литияLi6. В США применение этого материала относится к началу 1956 г.;
  • Отечественные учёные уже в стадии первых испытаний достигли высокой точности совпадения теоретических параметров термоядерного взрыва с наблюдаемыми на практике характеристиками;
  • Уровень теоретического обоснования конструкции был настолько высок, что стало возможным при экспериментальных взрывах искусственно занижать мощность, с целью снижения влияния на окружающее пространство;
  • В двух испытаниях 1955 г. впервые был осуществлён сброс термоядерных зарядов с борта серийных бомбардировщиков ТУ-16.


Рис. 6.43. Бомбардировщик ТУ-95 в момент начала бомбометания
30 октября 1961 г. над Новой Землёй на высоте 4000 м над поверхностью земли была взорвана самая мощная в мире термоядерная бомба с тротиловым эквивалентом 50 МГт.
Бомба была сброшена с бомбардировщика ТУ-95 (рис.6.43). Экипажем командовал майор Дурновцев А. Е.
Такого ещё на планете не происходило. Несмотря на то, что подорван был половинный заряд, вспышку в условиях облачности было видно на расстоянии тысячи километров.


Рис. 6.44. Термоядерная отечественная бомба мощностью 100 МГт
Это был акт разовой силовой демонстрации, сопутствовавшей конкретным обстоятельствам политической кухни, „большой игре“ на устрашение между сверхдержавами.
Это было единичное изделие, конструкция которого при полной „за- грузке“ ядерным горючим и при сохранении тех же габаритов позволяла достигнуть мощности даже в 100 мегатонн. Столь ужасающий взрыв в боевых условиях мгновенно породил бы огненный смерч, который охватил бы территорию огромной площади.
После этого испытания пришло понимание, что созданное оружие предназначено не для войны за жизнь - оно предназначено для уничтожения жизни.
Очевидно, именно после этого взрыва политическим лидерам «атомных» держав стала ясна бессмысленность дальнейшего наращивания «термоядерных мускулов». Оружия уже вполне хватало, чтобы в одночасье покончить со многими проблемами современной цивилизации.

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород - дейтерий, ядра которого имеют необычную структуру - один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно-урановая бомба, а также некоторые ее разновидности - сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы, которая будет описана ниже.

В западной прессе с некоторых пор появился термин loose nukes, под которым понимаются вышедшие из-под контроля государств ядерные боеприпасы, причем имеются в виду не заряды, утраченные в ходе инцидентов с военной техникой. После распада СССР было немало спекуляций на тему возможной утраты контроля над советским ядерным арсеналом со стороны руководства новых независимых государств, прежде всего России. Эти разговоры получили новый импульс после заявления бывшего секретаря Совета безопасности РФ генерала Александра Лебедя. В 1997 году он сказал, что во время пребывания в должности им якобы была создана комиссия по поиску портативных ядерных боеприпасов, имевших вид чемоданчика. По словам Лебедя, часть этих устройств (в разных интервью генерал называл разные цифры) была утрачена и даже, возможно, попала в руки чеченских сепаратистов. На официальном уровне Россия никогда не признавала утрату подобных ядерных средств, хотя это не значит, что переносных зарядов не существовало. Действительно, сообщалось, что начиная с 1960-х годов в СССР создавались носимые ядерные мины, правда, они имели вид ранцев, а не чемоданов. По следам скандальных заявлений Александра Лебедя и бурной реакции мировой прессы в 1998 году по инициативе секретаря Совета безопасности Андрея Кокошина была проведена проверка, в результате которой выяснилось, что ранцевые боеприпасы надежно хранились в одном из арсеналов и в войска не выдавались. К настоящему времени, вероятнее всего, все они уничтожены в рамках инициатив по сокращению тактических ядерных вооружений. Малогабаритные боеприпасы также создавались в США и предположительно в Израиле и Китае.

Террористам, которые задумают сделать бомбу, придется получить немало дополнительных знаний, в том числе в области технологии обработки радиоактивных металлов.

В Соединенных Штатах боеприпасы такого класса имели название SADM (аббревиатура, расшифровывающаяся как «специальный разрушающий атомный боеприпас») и представляли собой ранцы, имевшие минимальный вес 50−70 кг и мощность, эквивалентную 1кт. Они предназначались диверсионным подразделениям, которые могли высаживаться на территории противника в районе побережья, закладывать заряды под стратегические объекты, включать таймер и затем эвакуироваться, например с помощью подводной лодки. Также предполагалось вооружать ранцами инженерные подразделения для постановки заслонов, например в районе Фульдского коридора — двух низин среди гор, по которым ожидался рывок танков Варшавского договора с территории ГДР в направлении Франкфурта-на-Майне. Эти боеприпасы также уничтожены американской стороной в рамках процесса разоружения. В общем, если обвинения России в слабом контроле за ядерными боеприпасами так и не получили весомых подтверждений, факт существования ядерных мин диверсионного класса не подлежит сомнению.

Еще одна ядерная держава, сохранность ядерного арсенала которой вызывает определенное беспокойство, это Пакистан. 6 сентября прошлого года на военно-морской базе в Карачи произошел инцидент со стрельбой. Группа фундаменталистов на лодках попыталась захватить фрегат ВМС Пакистана. Морякам удалось отбить нападение, но в ходе расследования инцидента выяснилось, что в диверсионной вылазке на стороне боевиков участвовали младшие офицеры пакистанской армии. Кроме того, в заговоре могли быть замешаны и более высокопоставленные военные. Состояние вооруженных сил страны, где среди военнослужащих немало людей, симпатизирующих исламистам, вселяет беспокойство за судьбу ядерного арсенала Пакистана, недавно присоединившегося к атомному клубу. Особенно с учетом наличия в стране территорий, где процветает черный рынок оружия: они находятся в международно признанных границах Пакистана, но не контролируются армией и полицией.


Корабль Glomar Explorer, построенный корпорацией эксцентричного магната Говарда Хьюза по заказу ЦРУ, был замаскирован под научное судно. На самом деле в его днище был сделан специальный вырез для подъема на борт погибшей советской подлодки К-129 с ядерным оружием на борту.

Проще, чем мы думали

Однако, если страшный сон о завладении террористами боеприпасов из арсеналов ядерных государств, к счастью, пока не стал явью, то остается другая возможность. По силам ли злоумышленниками изготовить атомную бомбу, так сказать, в домашних условиях?

В разнообразных публикациях на эту тему, например в докладе, подготовленном Институтом контроля за ядерными материалами (Вашингтон, США), был сделан вывод о том, что хоть дело это крайне непростое, бомбу террористы сделать могут. Речь, правда, идет именно о взрывном устройстве, а не о сырье. В качестве сырья в производстве атомного оружия применяется высокообогащенный (то есть содержащий более 90% изотопа U235) уран и оружейный плутоний (Pu239), хотя можно изготовить бомбу (малоэффективную) и из реакторного плутония, загрязненного изотопами Pu240 и Pu242. Обогащение урана — долгий и сложный процесс, детали этой технологии держатся государствами в строгом секрете, плутоний в природе вообще практически не встречается — его получают путем облучения нейтронами урана или нептуния. Также в результате облучения урана-238 плутоний постепенно накапливается в топливных стержнях реакторов АЭС, но отделить его от урана и прочих примесей — весьма трудоемкая задача. Для изготовления бомбы террористы должны будут похитить готовые ядерные материалы или купить уже похищенные на черном рынке.


Этот памятный знак установлен в городе Эурека, штат Северная Каролина — неподалеку от того места, где со своим страшным грузом расстался терпящий крушение B-52. Одна из выброшенных бомб ушла в болото на 50-метровую глубину, да там до сих пор и лежит.

Для того чтобы произошел ядерный взрыв, необходимо перевести массив ядерного материала в сверхкритическое состояние, после чего начинается неконтролируемая реакция деления ядер с излучением нейтронов и выделением энергии. Достичь сверхкритического состояния можно, во‑первых, быстро соединив два подкритических фрагмента ядерных материалов в один или, во‑вторых, резко увеличив плотность подкритической сборки. Бомба Little Boy («Малыш»), что упала на Хиросиму, была построена по первому принципу («пушечная схема»). Внутри нее один фрагмент высокообогащенного урана выстреливался в другой фрагмент, и возникало сверхкритическое состояние. По второму принципу сконструировали бомбу, разрушившую Нагасаки (Fat Boy, «Толстяк»). Там плутониевая сфера равномерно обжималась взрывом (имплозивная схема), за счет чего и создавалась сверхкритичность.


Американский бомбардировщик B-52 не раз фигурировал в инцидентах с ядерным оружием. Громкая история случилась в январе 1966 г, когда этот гигантский самолет столкнулся в воздухе с заправщиком KC-135 неподалеку от испанской рыбацкой деревни Паломарес. Из четырех водородных бомб на борту три упали на землю и заразили местность радиацией, а одна рухнула в море и была найдена лишь два с половиной месяца спустя.

Мы не зря вспомнили бомбы зари атомной эры: большинство экспертов сходятся в том, что если террористы и смогут построить бомбу, то она как раз конструктивно будет напоминать ранние, простые, несовершенные образцы. Наиболее простая схема — пушечная, типа «Малыша», но для ее реализации необходим исключительно высокообогащенный уран в металлической форме. Достать его можно, похитив, например, топливные элементы научно-исследовательских реакторов. Более вероятно, что в руки террористов попадут широко используемые в атомной промышленности порошки оксидов урана или плутония. Ни порошки (из-за низкой плотности), ни даже металлический плутоний (из-за сильного нейтронного фона) для пушечной схемы не годятся. Это только по меркам нашего восприятия выстрел в пушке происходит мгновенно. В реальности же, пока две подкритические массы соединятся в сверхкритическую, нейтроны преждевременно запустят цепную реакцию, что заметно снизит мощность взрыва. Из порошков оксидов можно восстановить металлы, но это будет еще одно непростое звено в технологической цепочке. Есть вариант использовать порошки сами по себе, увеличив их плотность, но для этого понадобится специфический пресс, приобрести который, не привлекая к себе ненужного внимания, затруднительно.

В отличие от урановых и плутониевых бомб, материалы на основе лёгких элементов не имеют критической массы, что приводит к большим сложностям при создании ядерного оружия. Однако, при термоядерном синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении ядер такой же массы 2 35U. Поэтому, водородная бомба - гораздо более мощное оружие, чем атомная.

Термоядерное оружие - оружие массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия). При этом выделяется колоссальное количество энергии.

Кандидатами на роль применимых термоядерных реакций для водородной бомбы являются:

При температурах, достигаемых в атомных бомбах, реакция (1) проходит в юо раз быстрее, чем реакции (2) и (3) вместе взятые. Это объясняет, почему в первых термоядерных экспериментах участвовал тритий. Реакции (2) и (3), в свою очередь, в ю раз быстрее реакции (4). При этом скорость всех этих процессов (1-4) экспоненциально растёт с температурой. При повышении температуры скорость реакции (4) превышает скорость реакций (2)+(3) вместе взятых. Реакции (5) и (6) не являются термоядерными. Это обычные реакции деления, происходящие при захвате литием нейтрона в нужном энергетическом диапазоне. Зато в их ходе выделяется тритий, который также участвует в процессе. Реакция 6 Li + п требует нейтрона с энергией несколько МэВ, 7 Li + п - нейтрона не менее 4 МэВ. Используя лёгкую для поджога, но дорогую дейтериево-тритиевую смесь, возможно, инициировать реакцию даже при обычной плотности термоядерного горючего, используя лишь тепло от атомного взрыва (504-100 млн. градусов). Тритий - дорог в производстве (на порядок дороже оружейного плутония), да и к тому же распадается с Т= 12,32 лет. Это делает его мало пригодным к использованию. Остаётся 2 Н - дейтерий - вполне доступное горючее для реакций (2) и (з).

Чистый дейтерий был использован лишь однажды - во время испытания Ivy Mike (США). Его недостаток - его нужно очень сильно сжимать или сжижать при криогенной температуре, что непрактично. Проблема решается путём комбинирования дейтерия с литием в LiD. При этом за счёт деления лития производится большое количество трития для реакции (l). Для проведения реакции синтеза нужно: l) обеспечить высокую скорость протекания реакции (т.е. высокую температуру); 2) сохранить предыдущее условие на время, достаточное для протекания реакции; з) обеспечить большой энергетический выход, пропорциональный произведению (скорость реакции) (время её удержания).

Основная идея водородной бомбы (Теллера-Улама) основана на том факте, что при атомном взрыве 8о% энергии выделяется в виде мягких рентгеновских лучей, а не в виде осколков деления. Рентгеновские лучи намного опережают расширяющиеся (со скоростью ~юоо км/с) остатки плутония. Это позволяет использовать их для сжатия и поджога отдельной ёмкости с термоядерным горючим (второй ступени), путём обжатия излучением, до того, как расширяющийся первичный заряд разрушит её.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.


Рис. 6.

Компоненты бомбы помещаются в цилиндрический корпус- толкатель в виде цилиндра с пусковым атомным зарядом («триггером») на одном конце. Контейнер с термоядерным горючим - основной элемент бомбы. Его корпус изготовлен из 2 з 8 и - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Контейнер покрывается слоем нейтронного поглотителя (соединения бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - 6 LiD, и расположенный по оси контейнера плутониевый стержень из ^Ри, играющий роль запала термоядерной реакции. Триггер и контейнер заполняются пластмассой, проводящей излучение от триггера к контейнеру, и помещаются в стальной корпус бомбы. Триггер от цилиндра с горючим отделён защитной крышкой из урана или вольфрама.

После взрыва пускового заряда рентгеновские лучи, испускаемые из области реакции деления, распространяются по пластмассовому наполнителю. Основные составляющие пластмассы - атомы углерода и водорода, которые полностью ионизируются и становятся совершенно прозрачными для рентгеновского излучения. Урановый экран между триггером и капсулой с горючим, а так же сам корпус капсулы предотвращают преждевременный нагрев дейтерида лития. Тепловое равновесие устанавливается чрезвычайно быстро, так что температура и плотность энергии сохраняются постоянными на всём пути распространения излучения.

При взрыве триггера 8о% выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой оболочки происходит унос массы (абляция) вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. Явление уноса, подобно огненной струи ракетного двигателя направленного внутрь капсулы, развивает огромное давление на термоядерное горючее, вызывая прогрессирующее его обжатие (диаметр капсулы уменьшается в 30 раз, плотность материала возрастает в 1000 раз). Термоядерное топливо нагревается до температур, достаточных для начала реакции синтеза. Плутониевый стержень переходит в надкритическое состояние и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с 6 Li, в результате чего получается тритий, который взаимодействует с дейтерием. Абляция - унос массы с поверхности твёрдого тела потоком горячих газов, обтекающим эту поверхность. Абляция происходит в результате эрозии, расплавления, сублимации.

Быстрые нейтроны, в избытке имеющиеся при делении триггера, замедляются дейтеридом лития до тепловых скоростей и начинают цепную реакцию в стержне так скоро, как быстро он переходит в сверхкритическое состояние. Его взрыв, действующий наподобие «запальной свечи», увеличивает давления и температуры в центре капсулы, делая их достаточными для разжигания термоядерной реакции. Далее, самоподдерживающаяся реакция горения двигается к внешним областям капсулы с топливом.

Корпус капсулы мешает выходу теплового излучения за её пределы, значительно увеличивая эффективность горения. Температуры, возникающие в ходе термоядерной реакции, доходят до з*ю 8 К. Для срабатывания этой схемы крайне важны условия симметрии заряда и точного соблюдения условий эффективной лучевой имплозии.

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов 2 ^ 8 U добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои 2 з 8 и (слойка).

Двухступенчатая схема Теллера-Улама позволяет создавать столь мощные заряды, насколько хватит мощности триггера для сверхбыстрого обжатия большого количества горючего. Для дальнейшего увеличения величины заряда можно использовать энергию второй ступени для сжатия третьей. Вообще, на каждой стадии в таких устройствах возможно усиление мощности в -100 раз.

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.

Одним из типов ядерного оружия является термоядерное оружие , которое многим из нас более известно под названием водородная бомба . Такая бомба обладает огромным разрушительным действием. Принцип действия этого типа оружия основан на высвобождении огромного количества энергии при синтезе легких химических элементов в более тяжелые. Сегодня термоядерное оружие представлено в виде боеголовок для крылатых ракет, боеголовок для баллистических ракет и в виде авиационных бомб.

История создания термоядерного оружия

Исследованиями в области термоядерного оружия занимались многие страны мира, но основными являлись , и Великобритания и происходило это приблизительно в одно и то же время с 40-х годов 20 века.

Идея о создании бомбы с термоядерной реакцией принадлежит Станиславу Уламу и Эдварду Таллеру, которые заговорили об этом еще в 1941 году.

Первый проект по разработке термоядерного оружия получил название «Классический супер». Начало этому проекту положил Таллер, которого в 1942 году отстранили от создания атомной бомбы и перевели на изучение создания нового оружия – водородной бомбы. В 1945 году ученый уже представил практически готовый проект, по которому термоядерная реакция должна была проходить при разжигании жидкого дейтерия от тепла атомного заряда. Однако ученые встали с двумя проблемами, которые им предстояло решить: как разжечь дейтерий и будет ли реакция горения поддерживаться самостоятельно до прохождения термоядерной реакции. Найти решение этих проблем ученые не смогли и поэтому проект «супер» был закрыт.

Еще во время работы над созданием проекта «Классический супер» в 1946 году Таллер придумал еще один проект, получивший название «Будильник». Однако этот проект не получил должного внимания и работы по нему в США не проводились. Одновременно с возникновением «Будильника» в Советском Союзе начинается работа над похожим проектом «Слойка». Над созданием первой термоядерной бомбы в СССР трудился А.Д. Сахаров, который предложил окружить первичный атомный заряд чередующимися слоями делящегося и горючего термоядерного материала. Работы велись не зря, в итоге появилась первая в мире транспортабельная термоядерная авиабомба, в которой в качестве термоядерного топлива использовался Li6D – дейтерид лития-6, предложенный в марте 1949 года В.Л.Гинзбургом. «Слойка» оказалась действенным проектом, но по нему возможно было создавать только бомбы ограниченной мощности, так что ученые продолжали исследования.

Исследования продолжались и в Штатах, где была начата разработка проекта «Таллера-Улама». Станислав Улам с конца 50-го и до начала 51 года 20 века думал над решением усовершенствования деления ядерных зарядов и пришел к выводу, что усилить мощность термоядерного оружия можно увеличив компрессию делящегося материала, а этого можно добиться при помощи обжатия одного атомного заряда при помощи другого. Были проведены испытания, в результате которых удалось получить из емкости с термоядерным горючим отдельную капсулу для второй ступени заряда. Таллер сомневался в том, что из-за компрессии материала можно будет произвести поджег топлива, но расчеты Улама доказали обратное и Америка готова была приступить к изготовлению бомбы на практике. Несмотря на идею создания капсулы термоядерного топлива Улам не знал, как правильно использовать ее для создания бомбы и за решение этой проблемы взялся Таллер. Он заметил, что в ходе реакции деления выделяется небольшое количество кинетической энергии и много излучения, при этом излучение действует эффективнее механического обжатия. Эта идея Таллера ныне известна под названием Схема радиационной имплозии. Сжатое топливо в 1000 раз и разогретое до 1000000 градусов все равно не вызовет термоядерное горение, поэтому было решено еще расположить в центр плутониевый стержень, который будет переходить в критическое состояние, а при делении будет вызывать нужное повышение температуры. Это была финишная прямая на пути создания термоядерного оружия неограниченной мощности.

К идее применения обжатия с помощью радиационной имплозии пришли и ученые СССР в 1954-1955 гг.

Испытания термоядерного оружия

Первые испытания термоядерного оружия был проведены Соединенными Штатами Америки 1 ноября 1952 года. Заряд был взорван на атолле Эниветок в Тихом океане. Это была не бомба, а лабораторный образец, который внешне походил на некое сооружение. А вот первая готовая водородная бомба была испытана – бомба РДС-6, сделанная в СССР. Испытания устройства готового к использованию проводились на полигоне в Семипалатинске 12 августа 1953 года.

Самой крупной водородной обмой, которую испытывали, была водородная 50-мгатонная бомба, которую называют «царь-бомба» . Ее испытание проводили на полигоне, расположенном на архипелаге Новая Земля 30 октября 1961 года. Первоначально планировалось испытывать 100-мегатонную бомбу, но потом было решено вполовину уменьшить мощность испытуемого оружия. Бомбу взорвали на высоте 4 километров, после чего взрывная волна обогнула земной шар три раза. Испытания прошли успешно, но оружие не было взято на вооружение, зато эти испытания дали понять Америке, что Советский Союз может создавать термоядерные бомбы любого мегатоннажа.

В 1958 году над побережьем Джорджия (США) истребитель F-86 столкнулся с бомбардировщиком B-47. Последнему пришлось произвести аварийный сброс водородной бомбы МАРК 15 в океан. Бомба до сих пор не была найдена.

Над Испанией 17 января 1966 года произошло столкновение самолета-заправщика и бомбардировщика B-52 с пятью водородными бомбами. Три бомбы были найдены сразу после аварии, а две только после двух месяцев поиска.

В США 29 августа 2007 года произошел инцидент – в бомбардировщик B-52H были по ошибке загружены 6 крылатых ракет с термоядерными головками и переправлены из Северной Дакоты в Луизиану. О случайной переправке стало известно только через 36 часов и все это время оружие находилось без охраны. Ситуация вызвала громкий скандал и серьезные изменения в Военно-воздушных силах страны.