Температура вспышки больше 100 градусов. Химия нефти


Для создания НКПРП паров над поверхностью жидкости достаточно нагреть до температуры, равной НТПРП, не всю массу жид­кости, а лишь только ее поверхностный слой.

При наличии ИЗ такая смесь будет способ­на к воспламенению. На практике чаще всего используются понятия температура вспышки и воспламенения.

Под температурой вспышки понимают наименьшую темпера­туру жидкости, при которой над ее поверхностью в условиях спе­циальных испытаний образуется концентрация паров жидкости, способная к воспламенению от ИЗ, но скорость их образования недостаточна для последующего горения. Таким образом, как при температуре вспышки, так и при нижнем тем­пературном пределе воспламенения над поверхностью жидкости образуется нижний концентрационный предел воспламенения, однако в последнем случае HKПРП создается насыщенными пара­ми. Поэтому температура вспышки всегда несколько выше, чем НТПРП. Хотя при температуре вспышки имеет место кратковременное воспламенение паров в воздухе, которое не спо­собно перейти в устойчивое горение жидкости, тем не менее при определенных условиях вспышка паров жидкости способна явить­ся источником возникновения пожара.

Температура вспышки принята за основу классификации жидкостей на легковоспламеняющиеся (ЛВЖ) и горючие жидкости (ГЖ). К ЛВЖ относятся жидкости, имеющие температуру вспыш­ки в закрытом тигле 61 0 С или в открытом 65 0 С и ниже, к ГЖ – с температурой вспышки в закрытом тигле более 61 0 С или в открытом тигле 65 0 С.

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или от -13 до 27 0 С в открытом тигле;

III разряд – ЛВЖ, опасные при повышенной темпе­ратуре воздуха, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от 23 до 61 0 С в закрытом тигле или от 27 до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавли­вают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. Темпе­ратура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменени­ем физических свойств членов гомологического ряда (табл. 4.1).

Таблица 4.1.

Физические свойства спиртов

Молекулярная

Плот-ность,

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н-Пропиловый С 3 Н 7 ОН

н-Бутиловый С 4 Н 9 ОН

н-Амиловый С 5 Н 11 ОН

Температура вспышки повышается с увеличением молекулярной массы, темпе­ратуры кипения и плотности. Эти закономерности в го­мологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо от­метить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространятьна жидкости, принадлежащие к разным классам органических соединений.

При смешении горючих жидкостей с водой или четы-реххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки (см. табл. 4.2).

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25 %.

Таблица 4.2.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения. Такую температуру жидкости принято называть температурой воспламенения . Для ЛВЖ она отличается на 1-5 0 С от температуры вспышки, а для ГЖ – на 30-35 0 С. При температуре воспламенения жидко­стей устанавливается постоянный (стационарный) про­цесс горения.

Между температурой вспышки в закрытом тигле и нижним тем­пературным пределом воспламенения имеется корреляционная связь, описываемая формулой:

Т вс – Т н.п. = 0,125Т вс + 2. (4.4)

Это соотношение справедливо при Т вс < 433 К (160 0 С).

Существенная зависимость температур вспышки и воспламене­ния от условия эксперимента вызывает определенные трудности при создании расчетного метода оценки их величин. Одним из наиболее распространенных из них является полуэмпирический метод, предложенный В. И. Блиновым:

, (4.5)

где Т вс – температура вспышки, (воспламенения), К;

р вс – парциальное давление насыщенного пара жидкости при температуре вспышки (воспламенения), Па;

D 0 – коэффициент диффузии паров жидкости, м 2 /с;

n – количество молекул кислорода, необходимое для пол­ного окисления одной молекулы горючего;

Температурой вспышки нефтепродуктов называется температура, при которой пары образца, нагреваясь, вспыхивают при поднесении источника огня, смешиваясь с воздухом. Температура вспышки измеряется в открытом и закрытом тигле, и для первого это значение всегда выше на несколько градусов.

Определение температуры вспышки важно для достоверной информации о свойствах нефтепродукта и оценки его качества. Также этот параметр используется для разделения производственных помещений и оборудования на классы пожароопасности.

Методы определения

ГОСТ предлагает 2 основных метода определения температуры вспышки:

— в закрытом тигле,
— в открытом тигле.

Тигли – химические сосуды, предназначенные для нагревания, плавления, сжигания и других операций с опытными материалами, включая различное топливо.

Исследование в открытом тигле менее точное, потому что пары образца свободно смешиваются с воздухом и их необходимый объем набирается дольше. В паспорте качества нефтепродукта указывается температура вспышки в закрытом тигле (ТВЗ), как наиболее достоверная.

Для ее измерения сосуд наполняют топливом до указанной отметки и нагревают при непрерывном перемешивании. При открывании крышки сосуда над поверхностью смеси автоматически появляется открытый огонь. Измерение проводится через каждый градус нагревания, и во время открытия крышки помешивание останавливается. За температуру вспышки принимается значение, при котором с появлением источника огня возникает синватое пламя.

Существуют также специальные аппараты для определения температуры вспышки. Такое устройство включает следующие элементы:

  • электронагреватель мощностью 600 Вт,
  • стандартный сосуд с внутренним диаметром 50,8 мм и вместимостью около 70 мл,
  • латунная мешалка,
  • воспламенитель (электрический или газовый),
  • термометры с градуировкой в 1⁰С.

Температура вспышки различных нефтепродуктов

По температуре вспышки жидкие нефтепродукты классифицируются на легковоспламеняющиеся жидкости (ЛВЖ) и горючие жидкости (ГЖ) . Температура вспышки горючих жидкостей имеет значение выше 61⁰С для закрытого тигля и выше 65⁰С для открытого. Жидкости, вспыхивающие при температуре, не достигшей этих значений, относят к легковоспламеняющимся. ЛВЖ делятся на 3 разряда:

1. Особо опасные (ТВЗ от -18⁰С и ниже).
2. Постоянно опасные (ТВЗ от -18⁰С до 23⁰С).
3. Опасные при повышении температуры воздуха (ТВЗ от 23⁰С до 61⁰С).

Температура вспышки дизельного топлива – один из важных показателей его качества. Она напрямую зависит от самого вида топлива. Например, современное ДТ ЕВРО вспыхивает при достижении значения в 55⁰С и выше.

Температура вспышки топлива для тепловозов и судовых двигателей выше, чем для дизтоплива общего применения. А летнее топливо, нагреваясь, вспыхивает на 10-15⁰С раньше, чем зимнее и арктическое.

У легких нефтяных фракций низкая ТВЗ, и наоборот. Например:

  • температура вспышки масла моторного (тяжелые масляные фракции) – 130-325⁰С,
  • температура вспышки керосина (средние керосиновые и газойлевые фракции) – 28-60⁰С,
  • температура вспышки бензина (легкие бензиновые фракции) – до -40⁰С, то есть бензин вспыхивает при минусовых значениях температуры.

Температура вспышки нефти определяется фракционным составом , но в основном ее значения отрицательны (как и для бензинов) и колеблются в пределах от -35⁰С до 0⁰С. А температура вспышки газов, как правило, вообще не определяется. Вместо этого используют значения верхнего и нижнего пределов воспламеняемости, которые зависят от содержания паров газа в воздухе.

Температура вспышки - это температура, при которой нагреваемый в стандартных условиях нефтепродукт выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхиваю­щую при поднесении к ней пламени.

Этот показатель тесно увязан с температурой кипения, т.е. с испаря­емостью. Чем легче нефтепродукт, тем лучше он испаряется, тем ниже его температура вспышки. Например, бензиновые фракции имеют отри­цательные температуры вспышки (до -40°С), керосиновые фракции име­ют температуры вспышки в пределах 28-60°С, фракции дизельного топ­лива - 50-80°С, более тяжелые, масляные фракции - 130-325°С. Темпе­ратуры вспышки различных нефтей могут быть как положительными, так и отрицательными.

Наличие влаги в нефтепродуктах приводит к снижению температуры вспышки. Поэтому при определении ее в лабораторных условиях нефте­продукт должен быть освобожден от воды. Существуют два стандартных метода определения температуры вспышки: в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тигле. Разница в определении температуры вспышки между ними составляет 20-30°С. При определении вспышки в открытом тигле часть образовавшихся паров улетает в воздух, и требуе­мое их количество, необходимое для вспышки, накапливается позднее, чем в закрытом тигле.

Поэтому температура вспышки одного и того же нефтепродукта, оп­ределенная в открытом тигле, будет выше, чем в закрытом тигле. Как правило, температуру вспышки в открытом тигле определяют для высококипящих фракций нефти (масла, мазуты). За температуру вспышки принимают ту температуру, при которой на поверхности нефтепродукта появляется и сразу гаснет первое синее пламя. По температуре вспышки судят о взрывоопасных свойствах нефтепродукта, т.е. о возможности об­разования взрывчатых смесей его паров с воздухом. Различают нижний и верхний пределы взрываемости.

Если концентрация паров нефтепродукта в смеси с воздухом ниже нижнего предела, взрыв не произойдет, так как имеющийся избыток воз­духа поглощает выделившееся в точке взрыва тепло и таким образом пре­пятствует возгоранию других частей горючего.

При концентрации паров нефтепродукта в смеси с воздухом выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси.

Температура воспламенения. При определении температуры вспыш­ки наблюдается явление, когда нефтепродукт вспыхивает и сразу гаснет. Если нефтепродукт нагреть еще выше (на 30-50°С) и снова поднести ис­точник огня к поверхности нефтепродукта, то он не только вспыхнет, но и будет спокойно гореть. Минимальная температура, при которой неф­тепродукт вспыхивает и начинает гореть, называется температурой вос­пламенения.


Температура самовоспламенения . Если нефтепродукт нагреть до вы­сокой температуры без контакта с воздухом, а далее обеспечить такой контакт, то нефтепродукт может воспламениться самопроизвольно.

Минимальная температура, соответствующая этому явлению, назы­вается температурой самовоспламенения. Она зависит от химического состава. Наиболее высокими температурами самовоспламенения обла­дают ароматические углеводороды и богатые ими нефтепродукты, далее следуют нафтены и парафины.

Чем легче нефтепродукт, тем выше его температура самовоспламене­ния. Так, для бензинов она находится в пределах 400-450°С, для газой­лей - 320-360°С.

Самовоспламенение нефтепродуктов часто является причиной по­жаров на заводах. Любая разгерметизация фланцевых соединений в ко­лоннах, теплообменных аппаратах, трубопроводах и т.д. может привести к пожару.

Облитый нефтепродуктом изоляционный материал необходимо уда­лять, поскольку его каталитическое воздействие может вызвать самовосп­ламенение нефтепродукта при значительно более низких температурах.

Температура застывания . При транспортировке нефтепродуктов по тру­бопроводам и применении их в области низких температур в авиации боль­шое значение имеет их подвижность и хорошая прокачиваемость в этих ус­ловиях. Температура, при которой нефтепродукт в стандартных условиях испытаний теряет подвижность, называется температурой застывания.

Потеря подвижности нефтепродукта может происходить за счет двух факторов: или повышения вязкости нефтепродукта, или за счет образо­вания кристаллов парафина и загустевания всей массы нефтепродукта.

Температурой вспышки называется температура, при которой нефтепродукт, нагреваемый в стандартных условиях, выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхивающую при поднесении пламени и гаснущую из-за недостатка горючей массы в этой смеси.

Эта температура является характеристикой пожароопасных свойств нефтепродуктов, и на ее основе классифицируют объекты нефтедобычи и нефтепереработки по категориям пожарной опасности.

Температура вспышки НП связана с их средней температурой кипения, т.е. с испаряемостью. Чем легче фракция нефти, тем ниже ее температура вспышки. Так, бензиновые фракции имеют отрицательные (до -40 °С) температуры вспышки, керосиновые и дизельные 35-60 °С, масляные 130-325 °С. Для масляных фракций температура вспышки показывает наличие легкоиспаряющихся УВ.

Присутствие влаги, продуктов распада в НП заметно влияет на величину его температуры вспышки.

Стандартизированы два метода определения температуры вспышки: в открытом и закрытом тиглях. Разность температур вспышки одних и тех же НП в открытом и закрытом тиглях весьма велика. В последнем случае требуемое количество нефтяных паров накапливается раньше, чем в приборах открытого типа.

Все вещества, имеющие температуру вспышки в закрытом тигле ниже 61 °С, относятся к легковоспламеняющимся жидкостям (ЛВЖ), которые, в свою очередь, подразделяются на особо опасные (температура вспышки ниже минус 18 °С), постоянно опасные (температура вспышки от минус 18 °С до 23 °С) и опасные при повышенной температуре (температура вспышки от 23°С до 61°С).

Температура вспышки нефтепродукта характеризует возможность этого нефтепродукта образовывать с воздухом взрывчатую смесь. Смесь паров с воздухом становится взрывчатой, когда концентрация паров горючего в ней достигает определенных значений. В соответствии с этим различают нижний и верхний пределы взрываемости смеси паров нефтепродукта с воздухом.

Если концентрация паров нефтепродукта меньше нижнего предела взрываемости, взрыва не происходит, так как имеющийся избыток воздуха поглощает выделяющееся в исходной точке взрыва тепло и таким образом препятствует возгоранию остальных частей горючего. При концентрации паров горючего в воздухе выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси.

Ацетилен, оксид углерода и водород характеризуются самыми широкими интервалами взрываемости, поэтому они наиболее взрывоопасны.

Температурой воспламенения называют минимально допустимую температуру, при которой смесь паров НП с воздухом над его поверхностью при поднесении пламени вспыхивает и не гаснет в течение определенного времени, т.е. концентрация горючих паров такова, что даже при избытке воздуха горение поддерживается.

Определяют температуру воспламенения прибором с открытым тиглем, и по своему значению она на десятки градусов выше температуры вспышки в открытом тигле.

Температурой самовоспламенения называют такую температуру, при которой соприкосновение нефтепродукта с воздухом вызывает его воспламенение и устойчивое горение без поднесения источника огня.

Температуру самовоспламенения определяют в открытой колбе нагреванием до появления пламени в колбе. Температура самовоспламенения на сотни градусов выше температур вспышки и воспламенения (бензины 400-450 °С, керосины 360-380°С, дизельные топлива 320-380°С, мазуты 280-300°С).

Температура самовоспламенение нефтепродуктов зависит не от испаряемости, а от их химического состава. Наибольшей температурой самовоспламенения обладают ароматические углеводороды, а также богатые ими нефтепродукты, наименьшей – парафиновые.Чем выше молекулярная масса углеводородов, тем ниже температура самовоспламенения, так как она зависит от окислительной способности. С повышением молекулярной массы углеводородов их окислительная способность возрастает, и они вступают в реакцию окисления (обуславливающую горение) при более низкой температуре.

Температурные пределы воспламенения. Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная нижнему концентрационному пределу воспламенения, называется нижним температурным пределом воспламенения (НТПВ).

Температура жидкости, при которой над поверхностью создается концентрация насыщенного пара, равная верхнему концентрационному пределу воспламенения, называется верхним температурным пределом воспламенения (ВТПВ).

Например, для ацетона температурные пределы равны: НТПВ 253 К, ВТПВ 279 К. При этих температурах образуются концентрации паров соответственно 2,6 и 12,6 % (об.).

Температурные пределы воспламенения используют для оценки пожарной опасности жидкостей, при расчете безопасных режимов работы закрытых технологических аппаратов и складских емкостей с жидкостями и летучими твердыми веществами. Для пожаробезопасности технологического процесса, связанного с применением жидкостей, последний ведут при температурах ниже НТПВ на 10 К или выше НТПВ на 15 К. Для многих жидкостей температурные пределы определены и результаты сведены в справочные таблицы.

Температурные пределы могут быть рассчитаны. Расчетный метод применяют для ориентировочного определения температурных пределов воспламенения в целях нахождения предполагаемых температурных пределов перед началом экспериментального их определения, а также для ориентировочного расчета безопасных режимов работы технологической аппаратуры на стадии предпроектной проработки технологического процесса в отсутствие экспериментальных данных. Температурные пределы воспламенения можно вычислить, используя данные о давлении насыщенного пара при различных температурах, по формуле

где Р 1 , Р 2 – ближайшие к Р п меньшее и большее табличные значения давления пара, соответствующие температурам Т 1 и Т 2 .

Температурные пределы воспламенения можно рассчитать по экспериментально определенным концентрационным пределам. Если вычисленная величина не совпадает с экспериментальной, то в качестве действительной принимают более низкое значение для НТПВ и более высокое для ВТПВ. Вычисляют температурные пределы следующим образом.

Определяют давление паров Р н и Р в вещества, соответствующего нижнему и верхнему концентрационным пределам паров в воздухе

Если Р общ = 101080 Па, то Р в =1010 С в и Р н = 1010 С н , где Р н и Р в – экспериментальные значения нижнего и верхнего концентрационных пределов воспламенения паров в воздухе, % (об.).

По найденным значениям Р н и Р в вычисляют температурные пределы воспламенения, используя приведенные выше формулы и табличные данные зависимости давления пара от температуры.

Температура вспышки. Температура вспышки – самая низкая температура (в условиях специальных испытаний) вещества, при которой над поверхностью его образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость образования еще недостаточна для последующего горения.

Этот термин применяют для характеристики горючих жидкостей и он вошел во многие стандарты. Согласно ГОСТ 12.1.004-90 (Пожарная безопасность. Общие требования), жидкости, способные гореть, делятся на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ). ЛВЖ – это жидкости, имеющие температуру вспышки не выше 61 0 С (в закрытом тигле) или 65 0 С (в открытом тигле). ГЖ – это жидкости, имеющие температуру вспышки выше 61 0 С (в закрытом тигле) или 66 0 С (в открытом тигле).

I разряд – особо опасные ЛВЖ, к ним относятся легко воспламеняющиеся жидкости с температурой вспышки от -18 0 С и ниже в закрытом тигле или от -13 0 С и ниже в открытом тигле;

II разряд – постоянно опасные ЛВЖ, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше -18 0 С до 23 0 С в закрытом тигле или выше -13 0 С до 27 0 С в открытом тигле;

III разряд –ЛВЖ, опасные при повышенной температуре воздуха, к ним относятся легковоспламеняющиеся жидкости с температурой вспышки выше 23 0 С до 61 0 С в закрытом тигле или выше 27 0 С до 66 0 С в открытом тигле.

В зависимости от температуры вспышки устанавливают безопасные способы хранения, транспортирования и применения жидкостей для различных целей. температура вспышки жидкостей, принадлежащих к одному и тому же классу, закономерно изменяется с изменением физических свойств членов гомологического ряда (табл. 5.2).

Из данных табл. 5.2 видно, что температура вспышки повышается с увеличением молекулярной массы, температуры кипения и плотности. Эти закономерности в гомологическом ряду говорят о том, что температура вспышки связана с физическими свойствами веществ и сама является физическим параметром. Необходимо отметить, что закономерность изменения температуры вспышки в гомологических рядах нельзя распространять на жидкости, принадлежащие к разным классам органических соединений.

Таблица 5.2

Физические свойства спиртов

Молекулярная масса

Плотность, кг/м 3

Температура, К

Метиловый СН 3 ОН

Этиловый С 2 Н 5 ОН

н -Пропиловый С 3 Н 7 ОН

н -Бутиловый С 4 Н 9 ОН

н- Амиловый С 5 Н 11 ОН

При смешении горючих жидкостей с водой или четыреххлористым углеродом давление горючих паров при той же температуре понижается, что приводит к повышению температуры вспышки. Можно разбавить горючую жидкость до такой степени, что получившаяся смесь не будет иметь температуру вспышки:

растворе, % …………………

Температура вспышки, 0 С

метилового спирта …………

этилового спирта …………..

Практика пожаротушения показывает, что горение хорошо растворимых в воде жидкостей прекращается, когда концентрация горючей жидкости достигает 10-25%.

Для бинарных смесей горючих жидкостей, хорошо растворимых друг в друге, температура вспышки находится между температурами вспышки чистых жидкостей и приближается к температуре вспышки одной из них в зависимости от состава смеси.

С повышением температуры жидкости скорость испарения увеличивается и при определенной температуре достигает такой величины, что раз подожженная смесь продолжает гореть после удаления источника воспламенения.


Такую температуру жид-кости принято называть температурой воспламенения. Для ЛВЖ она отличается на 1 – 5 0 С от температуры вспышки, а для ГЖ – на 30 – 35 0 С. При температуре воспламенения жидкостей устанавливается постоянный (стационарный) процесс горения.

5.3. Процесс горения жидкостей. Скорость выгорания

Горение жидкостей сопровождается не только химической реакцией (взаимодействие горючего вещества с кислородом воздуха), но и физическими явлениями, без которых горение невозможно. Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло из зоны горения к поверхности жидкости передается излучением. Передача тепла теплопроводностью невозможна, так как скорость движения паров от поверхности жидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, так как поток паров в объеме пламени направлен от поверхности менее нагретой (жидкость) к поверхности более нагретой.

Количество тепла, излучаемое пламенем, зависит от его степени черноты и температуры. Степень черноты пламени определяется концентрацией углерода, выделяющегося в пламени жидкости при горении жидкости. Например, степень черноты пламени при горении нефти и нефтепродуктов в больших резервуарах близка к единице.

Количество тепла, поступающее от факела Q р в единицу времени на единицу поверхности жидкости, можно определить по формуле

,

где e – степень черноты; s – постоянная Стефана – Больцмана, равная 2079×10 -7 кДж/(м 2 ×ч×К 4); Т ф – температура пламени факела, К; Т ж – температура поверхности жидкости, К.

Это тепло расходуется на испарение жидкости , ее нагревание от начальной температуры до температуры поверхности , т.е. прогрев жидкости в глубину:

,

где r – теплота испарения, кДж/ч; r – плотность, г/см 3 ; v – линейная скорость горения, мм/ч; u – скорость прогрева жидкости в глубину, мм/ч; Т п – температура поверхности жидкости, К; Т 0 – начальная температура жидкости, К; с удельная теплоемкость жидкости, Дж/(г×К).

Таким образом,

В установившемся процессе горения (т.е. при постоянной температуре пламени) наблюдается равновесие между количеством сгоревшего в зоне горения (пламени) вещества и массой пара, поступающего в пламя. Это определяет постоянную скорость испарения и, следовательно, выгорание жидкости в течение всего процесса горения.

Скорость горения жидкостей. Различают две скорости горения жидкостей – массовую и линейную. Массовой скоростью G называется масса жидкости (кг), вы-горающей в единицу времени (ч, мин) с единицы поверхности. Под линейной скоростью v горения жидкости понимают высоту ее слоя (мм, см), выгорающего в единицу времени:

где r — плотность жидкости, кг/м 3 ; h – высота слоя сгоревшей жидкости, мм; t — время горения.

Зная или определив линейную скорость выгорания, можно вычислить массовую и наоборот.

Скорость горения жидкостей непостоянна и изменяется в зависимости от начальной температуры, диаметра резервуара, уровня жидкости в резервуаре, скорости ветра и других факторов. Для горелок малых диаметров скорость сгорания сравнительно велика. С увеличением диаметра скорость сгорания сначала уменьшается, а затем возрастает, пока не достигнет определенного постоянного значения для данной жидкости. Такая зависимость обусловлена различными причинами. На скорость горения в малых горелках существенно влияют стенки, так как пламя, соприкасаясь с ними, нагревает верхнюю кромку до высокой температуры. От верхней кромки тепло теплопроводностью распространяется по всей стенке и передается жидкости. Этот дополнительный приток тепла со стороны стенки увеличивает скорость испарения жидкости. Увеличение скорости горения с увеличением диаметра связано с переходом от ламинарного режима горения к турбулентному. Этот переход сопровождается уменьшением полноты сгорания, а большое количество выделяющейся сажи способствует увеличению степени черноты пламени, что приводит к увеличению теплового потока от пламени. При турбулентном горении обеспечивается наиболее быстрый отвод паров от поверхности жидкости, увеличивается скорость испарения.

Скорость горения в больших резервуарах увеличивается с ростом диаметра незначительно. Считают, что скорость горения в резервуарах диаметром больше 2 м практически одинакова.

Сильный ветер способствует смешиванию паров с воздухом, повышению температуры пламени, в результате чего интенсивность горения увеличивается.

По мере снижения уровня жидкости в резервуаре увеличивается расстояние от пламени до поверхности жидкости, поэтому уменьшается приток тепла к жидкости. Скорость сгорания же постепенно уменьшается и при некотором критическом расстоянии поверхности жидкости от кромки борта может наступить самотушение. Это расстояние называется критической высотой ; она увеличивается с увеличением диаметра резервуара. Для больших резервуаров зависимость скорости горения от высоты свободного борта практического значения не имеет, так как высота стандартных резервуаров всегда значительно меньше критической высоты. Так, расчет показывает, что само- тушение в резервуаре диаметром 23 м может наступить при высоте его более 1 км. Действительная высота резервуара 12 м.