Строение атома ванадия. Признаки избытка ванадия


Металл серебристо - белого цвета, который при нагреве до температуры 300 градусов Цельсия склонен к насыщению различными газами, например, кислородом или азотом, называют ванадием. Металл ванадий и его цена за 1 кг лома на сегодня лежит в диапазоне от нескольких десятков до тысяч долларов США - это химический элемент, занимающий в таблице Менделеева место под номером 23. Он расположен между титаном и хромом.

Ванадий - это тугоплавкий металл, температура плавления составляет 1735 ºC. Он часто встречается в земной коре, по некоторым расчётам, его объем составляет до 0,005%, от земной коры. Его можно встретить в составе более чем полусотни минералов. Для нужд экономики ежегодно добывают 10 000 тонн этого металла.

Кстати, специалисты горного дела считают рентабельными выработки с рудой, содержащей более 0,1% ванадия.

Цена ванадия за 1 кг лома

Роль ванадия в промышленности сложно переоценить. Более того если посмотреть на динамику добычи этого материала, то сразу будет видно, что ежегодный прирост составляет до 1,5%. Ключевыми игроками в этой части рынка можно назвать следующие страны:

  • Китай;
  • Российская Федерация.

На долю остальных государств приходиться всего несколько процентов от мирового объема, между тем как «Поднебесная» контролирует более трети рынка. По оценкам некоторых экспертов - до 36%.

Следует отметить и то, что рост добычи был спровоцирован увеличением объемов потребления ванадия и его производных в металлургической промышленности. И вновь - Китай впереди всех. Такая ситуация не может не отразится не уровне цен на этот металл и его соединения.

Цена на сентябрь 2018 года за кг ванадия составляет 16 долларов США или 900 рублей.

Говоря о цене на этот продукт надо понимать что на рынке в РФ представлено несколько позиций продукции, содержащий в себе ванадий. Это:

  • Полоса;
  • Проволока;
  • Слиток;
  • Проволока и пр.

При этом на рынке РФ активно работает несколько компаний, большинство из которых, расположены в Москве. В зависимости от типа продукции существенно разнится цена.

Так к примеру, ВНПЛ-1 (полоса) достигает стоимости в Москве 2026 USD, а ВНМ - 1 (слиток) 211.

Такой уровень цен обусловлен в первую очередь сложностью потребления и конечно спросом со стороны потребителей.

Применение ванадия в промышленности

Изначально, ванадий применяли для получения цветного стекла, керамических изделий и красок. Соединения, полученные на основании ванадия придавали неповторимый голубой или зелёный цвет стекольным изделиям. В том время как фарфор и керамика получали золотистую глазурь полученную из веществ, полученных из ванадия.

Оксид ванадия, произвёл значительный прорыв в теле окрашивания тканей, произведённых из хлопка и шелка.

Первая мировая война вызвала всплеск интереса к ванадию, точнее к серной кислоте, которую производили с помощью этого металла. Именно при получении кислоты, ванадий стали использовать как заменитель платины, которую использовали как катализатор.

Ванадий и металлургия

В отличии от химической отрасли, обходящейся ванадиевыми производными, металлургическая промышленность использует его в чистом виде. Все дело в том, что этот металл применяют как легирующий элемент.

После аварии, случившейся на гонках, обломок двигателя попал в руки Генри Форда - старшего, который и вызвал его к себе необычайной твёрдостью, вязкостью и малым весом. После проведённых анализов стало понятно, что двигатель был изготовлен из стали с примесью ванадия.

Исследования, выполненные в компании Форда, позволили получить стальные сплавы отличающиеся низкой массой, высокой прочностью. В следствие этого автомобили получили улучшенные ходовые характеристики, жёсткость и прочность конструкции. Кстати, после этого, Генри Форд и произнёс фразу, приведённую выше.

Примерно в то же время инженеры из разных стран использовали ванадиевые стали для получения брони, изготовления оружейных стволов, установленных, в том числе и на авиационных пушках и пулемётах.

Можно отметить, что для изготовления армейских касок во время Первой мировой войны применяли кремниевые и никелевые добавки, но только использование ванадиевых присадок, позволило добиться желаемых результатов. При этом, содержание ванадия в стали достигало всего 0,2%. Надо отметить, что использование этого металла позволило снизить вес и цены на изделия для военных. Изготовление стали с добавлением ванадиевых и хромовых компонентов, обладающей высокой усталостной прочностью, позволило увеличить выпуск авиационных моторов, торпед, бронебойных боеприпасов и пр. Кстати, появление таких сталей привело к снижению цены на готовую продукцию.

Некоторые особенности использования ванадия

Специалисты знают, что использование ряда элементов изменяет свойства стали. Например, молибден обеспечивает хорошую прокаливаемость, никель повышает вязкость. Но и тем не менее, какое влияние может оказать та или иная добавка можно определить не всегда. Между тем, ответ на вопрос, почему ванадий оказывает хорошее воздействие на стали лежит на поверхности.

Все дело в свойствах этого металла. В процессе изготовления расплав стали активно впитывает в себя различные газы. По мере остывания, в стальном слитке образуются микроскопические пузырьки. При дальнейшей обработке, например, ковке, он изменяют форму и его прочность становиться разной. После введения в расплав ванадия, он вступает в реакцию с проникшими газами, а это в свою очередь приводит к образованию шлаков , которые всплывают и удаляются в процессе плавки. Оставшийся в стали ванадий образует твёрдые и жаростойкие соединения, их называют карбиды. Они препятствуют появлению крупных кристаллов. После остывания сталь получается мелкозернистой, обладающей высокой твёрдостью и ковкостью.

Наличие ванадия в стали позволяет ей сохранять свои свойства при высоких температурах, которых появляются при обработке, например, при точении или шлифовании.

Кроме того, ванадиевые добавки, гарантируют наличие мелкокристаллической структуры материала.

Ещё свойство, которое появляется у стали, полученной с ванадиевыми добавками - стойкость к истиранию.

Так, цилиндры, применяемые в дизельных двигателях и изготовленные из качественной углеродистой стали, после пробега в тысячу моточасов теряют до 0,4 мм в толщине стенки, в то время, как те, которые выполнили из ванадиевой стали всего 0, 1 мм. Это не только повышают ресурс двигателя, но и снижают эксплуатационную стоимость.

Кстати, ванадий применяют не только в получении стали. Его применяют при производстве алюминиевого сплава под названием Вавилим. Он применяется при производстве машин и механизмов работающих под воздействием морской воды.

Ванадий применяют при производстве лабораторной посуды, инструментальных сталей. Даже качественные духовые музыкальные инструменты не обходятся без его участия.

На основании вышесказанного можно сказать следующее - применение ванадия и его соединений позволяет не только улучшить свойства различных материалов, но и снизить их эксплуатационные свойства.

Ванадий в человеческом организме

Без этого элемента не обходится и наш организм. В частности ванадий оказывает следующее воздействие:

  • замедляет процессы старения;
  • усиливает процессы обмена веществ;
  • замедляет процесс выработки холестерина;
  • положительно влияет на работу цнс, органов пищеварения и пр.;
  • стабилизирует работу сердечно-сосудистой системы, в том числе снижает кровяное давление.

Надо отметить, что это малая часть его положительного влияния ванадия на человеческий организм. Именно поэтому этот элемент и его производные входят в состав различных медикаментов и витаминов, которые можно приобрести во многих аптеках нашей страны, в том числе и Москвы.

Производство ванадия, формы поставки

Сложностью технологического процесса и трудоёмкостью отличается производство ванадия и изделий из него. Это вызвано в первую очередь тем, что ванадиевая руда имеет сложный состав и малое содержание искомого урана. Именно поэтому, использование традиционных методов обогащения руды не представляется возможным.

Ванадий

Ванадий — элемент побочной подгруппы пятой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 23. Обозначается символом V (лат. Vanadium ). Простое вещество ванадий — пластичный металл серебристо-серого цвета.

  1. История открытия

Впервые ванадий был фактически открыт в 1781 г. профессором минералогии из Мехико, Андресом Мануэлем Дель Рио в свинцовых рудах. Он обнаружил новый металл и предложил для него название «панхромий» из-за широкого диапазона цвета его соединений, сменив затем на «эритроний». Дель Рио не имел авторитета в научном мире Европы, и европейские химики усомнились в его результатах. Затем и сам Дель Рио потерял уверенность в своём открытии и заявил, что открыл всего лишь хромат свинца.

В 1830 году ванадий был открыт заново шведским химиком Нильсом Сефстрёмом в железной руде. Новому элементу название дали Берцелиус и Сефстрём.

Шанс открыть ванадий был у Фридриха Вёлера, исследовавшего мексиканскую руду, но он незадолго до открытия Сефстрёма серьёзно отравился фтороводородом и не смог продолжить исследования. Однако Вёлер довёл до конца исследование руды и окончательно доказал, что в ней содержится именно ванадий, а не хром.

  1. Нахождение в природе

Ванадий относится к рассеянным элементам и в природе в свободном виде не встречается. Содержание ванадия в земной коре 1,6×10 −2 % по массе, в воде океанов 3×10 −7 %. Наиболее высокие средние содержания ванадия в магматических породах отмечаются в габбро и базальтах (230—290г/т). В осадочных породах значительное накопление ванадия происходит в биолитах (асфальтитах, углях, битуминозных фосфатах), битуминозных сланцах, бокситах, а также в оолитовых и кремнисто-железных рудах. Близость ионных радиусов ванадия и широко распространённых в магматических породах железа и титана приводит к тому, что ванадий в гипогенных процессах целиком находится в рассеянном состоянии и не образует собственных минералов. Его носителями являются многочисленные минералы титана (титаномагнетит, сфен, рутил, ильменит), слюды, пироксены и гранаты, обладающие повышенной изоморфной ёмкостью по отношению к ванадию. Важнейшие минералы: патронит V(S 2) 2 , ванадинит Pb 5 (VO 4) 3 Cl и некоторые другие. Основной источник получения ванадия — железные руды, содержащие ванадий как примесь.

Месторождения

Известны месторождения в Перу, Колорадо, США, ЮАР, Финляндии, Австралии, Армении, России.

  1. Получение Ванадия

В промышленности при получении ванадия из железных руд с его примесью сначала готовят концентрат, в котором содержание ванадия достигает 8-16 %. Далее окислительной обработкой ванадий переводят в высшую степень окисления +5 и отделяют легко растворимый в воде ванадат натрия (Na) NaVO 3 . При подкислении раствора серной кислотой выпадает осадок, который после высушивания содержит более 90 % ванадия.

Первичный концентрат восстанавливают в доменных печах и получают концентрат ванадия, который далее используют при выплавке сплава ванадия и железа — так называемого феррованадия (содержит от 35 до 80 % ванадия). Металлический ванадий можно приготовить восстановлением хлорида ванадия водородом (H), кальцийтермическим восстановлением оксидов ванадия (V 2 O 5 или V 2 O 3), термической диссоциацией VI 2 и другими методами

  1. Физические свойства

Ванадий — пластичный металл серебристо-серого цвета, по внешнему виду похож на сталь. Кристаллическая решётка кубическая объёмно-центрированная, a=3,024 Å, z=2, пространственная группа Im3m . Температура плавления 1920 °C, температура кипения 3400 °C, плотность 6,11 г/см³. При нагревании на воздухе выше 300 °C ванадий становится хрупким. Примеси кислорода, водорода и азота резко снижают пластичность ванадия и повышают его твёрдость и хрупкость.

  1. Химические свойства

Химически ванадий довольно инертен. Он стоек к действию морской воды, разбавленных растворов соляной, азотной и серной кислот, щелочей.

С кислородом ванадий образует несколько оксидов: VO, V 2 O 3 , VO 2 ,V 2 O 5 . Оранжевый V 2 O 5 — кислотный оксид, темно-синий VO 2 — амфотерный, остальные оксиды ванадия — основные. Галогениды ванадия гидролизуются. С галогенами ванадий образует довольно летучие галогениды составов VX 2 (X = F, Cl, Br, I), VX 3 , VX 4 (X = F, Cl, Br), VF 5 и несколько оксогалогенидов (VOCl, VOCl 2 , VOF 3 и др.).

Соединения ванадия в степенях окисления +2 и +3 — сильные восстановители, в степени окисления +5 проявляют свойства окислителей. Известны тугоплавкий карбид ванадия VC (t пл =2800 °C), нитрид ванадия VN, сульфид ванадия V 2 S 5 , силицид ванадия V 3 Si и другие соединения ванадия.

При взаимодействии V 2 O 5 с основными оксидами образуются ванадаты — соли ванадиевой кислоты вероятного состава HVO 3 .

  1. Применение

80 % всего производимого ванадия находит применение в сплавах, в основном для нержавеющих и инструментальных сталей.

Ванадиевую сталь используют для обшивки корпусов судов. Возрастающая конкуренция в судостроении интенсифицирует внедрение сталей, позволяющих осуществлять скоростную сварку во влажной среде. Расширяется использование ванадия в производстве сплавов на основе титана и других тугоплавких металлов, предназначенных для новой техники (авиационной, ракетной, ядерной энергетики). Содержание ванадия в этих сплавах составляет 0,8-6,0 %. Ванадий в сочетании с алюминием используют с целью придания требуемой прочности в сплавах титана, идущего на создание специальных батисфер для исследования океана на глубине 10 000 м. Добавление ванадия в алюминиевые сплавы улучшает их жаропрочность и свариваемость.

Атомно-водородная энергетика:

Хлорид ванадия применяется при термохимическом разложении воды в атомно-водородной энергетике (ванадий-хлоридный цикл «Дженерал Моторс», США). В металлургии ванадий обозначается буквой Ф.

Химические источники тока:

Пентаоксид ванадия широко применяется в качестве положительного электрода (анода) в мощных литиевых батареях и аккумуляторах. Ванадат серебра в резервных батареях в качестве катода.

  1. Биологическая роль и воздействие

Установлено, что ванадий может тормозить синтез жирных кислот, подавлять образование холестерина. Ванадий ингибирует ряд ферментных систем, тормозит фосфорилирование и синтез АТФ, снижает уровень коферментов А и Q, стимулирует активность моноаминоксидазы и окислительное фосфорилирование. Известно также, что при шизофрении содержание ванадия в крови значительно повышается.

Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы; а также лейкопения и анемия, которые сопровождаются нарушениями основных биохимических параметров организма.

При введении ванадия животным (в дозах 25-50 мкг/кг), отмечается замедление роста, диарея и увеличение смертности.

Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Ванадий и его соединения токсичны. Токсическая доза для человека 0,25 мг, летальная доза — 2-4 мг.

Повышенное содержание белков и хрома в рационе снижает токсическое действие ванадия. Нормы потребления для этого минерального вещества не установлены.

Кроме того ванадий у некоторых организмов, например, у морских жителей дна голотурий и асцидий концентрируется в целомической жидкости/крови, причем его концентрации достигают 10 %! То есть эти животные являются биологическим концентратором ванадия. Его функция в организме голотурий до конца не ясна, разные ученые считают его отвечающим либо за перенос кислорода в организме этих животных, либо за перенос питательных веществ. С точки зрения практического использования — возможна добыча ванадия из этих организмов, экономическая окупаемость таких «морских плантаций» на данный момент не ясна, но в Японии имеются пробные варианты.

  1. Изотопы

Природный ванадий состоит из двух изотопов: слаборадиоактивного 50 V (изотопная распространённость 0,250 %) и стабильного 51 V (99,750 %). Период полураспада ванадия-50 равен 1,5×10 17 лет, т. е. для всех практических целей его можно считать стабильным; этот изотоп в 83 % случаев посредством электронного захвата превращается в 50 Ti, а в 17 % случаев испытывает бета-минус-распад, превращаясь в 50 Cr. Известны 24 искусственных радиоактивных изотопа ванадия с массовым числом от 40 до 65 (а также 5метастабильных состояний). Из них наиболее стабильны 49 V (T 1/2 =337 дней) и 48 V (T 1/2 =15,974 дня).

Литий

Литий (лат. Lithium ; обозначается символом Li) — элемент главной подгруппы первой группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 3. Простое вещество литий — мягкий щелочной металл серебристо-белого цвета.

  1. История открытия

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li, Na), а затем в сподумене LiAl и в лепидолите KLi 1.5 Al 1.5 (F,OH) 2 . Металлический литий впервые получил Гемфри Дэви в 1825 году.

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

  1. Нахождение в природе

Геохимия лития:

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.

Основные минералы лития — слюда лепидолит — KLi 1,5 Al 1,5 (F, OH) 2 и пироксен сподумен — LiAl . Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносоленых озёр.

Месторождения:

Месторождения лития известны в России, Аргентине, Мексике, Афганистане, Чили, США, Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве, Конго.

  1. Получение Лития

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси).

2LiCl(ж) = 2Li + Cl2

В дальнейшем полученный литий очищают методом вакуумной дистилляции.

  1. Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмно-центрированную решётку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решётку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружён 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

  1. Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранится в керосине (к тому же плотность лития столь мала, что он будет в нём плавать) и может непродолжительное время храниться на воздухе.

Во влажном воздухе медленно реагирует с азотом, находящимся в воздухе, превращаясь в нитрид Li 3 N, гидроксид LiOH и карбонат Li 2 CO 3 . В кислороде при нагревании горит, превращаясь в оксид Li 2 O. Есть интересная особенность, что в интервале температур от 100 °C до 300 °C литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется.

В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура возгорания находится около 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.

Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H 2 . Реагирует также с этиловым спиртом (с образованием алкоголята), с водородом (при 500—700 °C) с образованием гидрида лития, с аммиаком и с галогенами (с иодом — только при нагревании). При 130 °C реагирует с серой с образованием сульфида. В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид). При 600—700 °C литий реагирует с кремнием с образованием силицида. Химически растворим в жидком аммиаке (-40 °C), образуется синий раствор.

Литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на кожу, слизистые оболочки и в глаза.

  1. Применение

Термоэлектрические материалы:

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530 мкВ/К).

Химические источники тока:

Из лития изготовляют аноды химических источников тока (аккумуляторов, например литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран,пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов.

Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития).

Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом).

Лазерные материалы:

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски, и для изготовления оптики с широкой спектральной полосой пропускания.

Окислители:

Перхлорат лития используют в качестве окислителя.

Дефектоскопия:

Сульфат лития используют в дефектоскопии.

Пиротехника:

Нитрат лития используют в пиротехнике.

Сплавы:

Сплавы лития с серебром и золотом, а также медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике. На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придает им пластичность и стойкость против коррозии.

Электроника:

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO 3 и танталат лития LiTaO 3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике. Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп.

Металлургия:

В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Литий иногда применяется для восстановления методами металлотермии редких металлов.

Металлургия алюминия:

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия и его потребление растет с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5-3,5 кг на тонну выплавляемого алюминия).

Легирование алюминия:

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются.

Наиболее известны системы легирования Al-Mg-Li (пример — сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример — сплав 1460, применяемый для изготовления емкостей для сжиженных газов).

Ядерная энергетика:

Изотопы 6 Li и 7 Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафниат лития входит в состав специальной эмали, предназначенной для захоронения высокоактивных ядерных отходов, содержащих плутоний.

Литий-6 (термояд):

Применяется в термоядерной энергетике.

При облучении нуклида 6 Li тепловыми нейтронами получается радиоактивный тритий 3 1 H (Т):

6 3 Li + 1 0 n = 3 1 H + 4 2 He.

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6 LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7 (теплоноситель):

Применяется в ядерных реакторах, использующих реакции с участием тяжёлых элементов, таких как уран, торий или плутоний.

Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов, жидкий литий-7 (часто в виде сплава с натрием или цезием-133) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF 2) носит название «флайб» (FLiBe) и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и для производства трития.

Сушка газов:

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина:

Соли лития обладают психотропным действием и используются в медицине при профилактике и лечении ряда психических заболеваний. Наиболее распространен в этом качестве карбонат лития. Применяется в психиатрии для стабилизации настроения людей, страдающих биполярным расстройством и частыми перепадами настроения. Он эффективен в предотвращении мании депрессии и уменьшает риск суицида. Медики не раз наблюдали, что некоторые соединения лития (в соответствующих дозах, разумеется) оказывают положительное влияние на больных, страдающих маниакальной депрессией. Объясняют этот эффект двояко. С одной стороны, установлено, что литий способен регулировать активность некоторых ферментов, участвующих в переносе из межклеточной жидкости в клетки мозга ионов натрия и калия. С другой стороны, замечено, что ионы лития непосредственно воздействуют на ионный баланс клетки. А от баланса натрия и калия зависит в значительной мере состояние больного: избыток натрия в клетках характерен для депрессивных пациентов, недостаток — для страдающих маниями. Выравнивая натрий калиевый баланс, соли лития оказывают положительное влияние и на тех, и на других. Лития никотинат (литиевая соль никотиновой кислоты, литонит) используется как неспецифическое средство для лечения больных алкоголизмом, препарат улучшает метаболические процессы и гемодинамику, уменьшает аффективные расстройства.

Смазочные материалы:

Стеарат лития («литиевое мыло») используется в качестве высокотемпературной смазки.

Регенерация кислорода в автономных аппаратах:

Гидроксид лития LiOH, пероксид Li 2 O 2 и супероксид LiO 2 применяются для очистки воздуха от углекислого газа; при этом последние два соединения реагируют с выделением кислорода (например, 4LiO 2 + 2CO 2 → 2Li 2 CO 3 + 3O 2), благодаря чему они используются в изолирующих противогазах, в патронах для очистки воздуха на подлодках, на пилотируемых космических аппаратах и т. д.

Силикатная промышленность:

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий.

Прочие области применения:

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

  1. Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6 Li (7,5 %) и 7 Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов и два ядерных изомера (4 Li − 12 Li и 10m1 Li − 10m2 Li соответственно). Наиболее устойчивый из них, 8 Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3 Li (трипротон), по-видимому, не существует как связанная система.

7 Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть вскоре после Большого Взрыва). Образование элемента лития в звездах возможно по ядерной реакции «скалывания» более тяжелых элементов.

Заключение:

Оба, вышерассмотренные химические элементы являются неотъемлемой частью нашей жизни, так как хотя бы без одного из них невозможно существование какой-либо отрасли специализации.

Литий и Ванадий оба мало похожие друг на друга металлы, но каждый из них играет немалую роль в применении.

Список используемой литературы:

Для создания данной работы были использованы материалы с сайта:

  1. ru.wikipedia.org/wiki/Литий
  2. ru.wikipedia.org/wiki/Ванадий
  3. http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/LITI.html
  4. http://www.xumuk.ru/encyklopedia/2344.html
  5. http://chem100.ru/elem.php?n=3
  6. http://revolutionpedagogics/00228636.html

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ №19

РЕФЕРАТ ПО «ХИМИИИ»

ТЕМА: ВАНАДИЙ И ЛИТИЙ

Выполнил: студент

1 курса 1ВМ1 группы

Капустянский Владислав

Александрович

Проверил: преподаватель

Денис Александрович

Москва, 2010г.

Ванадий:

  1. История открытия
  2. Нахождения в природе

Месторождения

  1. Получение Ванадия
  2. Физические свойства
  3. Химические свойства
  4. Применение

Атомно-водородная энергетика

Химические источники тока

  1. Биологическая роль и воздействие
  2. Изотопы

Литий:

  1. История открытия
  2. Нахождение в природе

Геохимия

Месторождения

  1. Получение Лития
  2. Физические свойства
  3. Химические свойства
  4. Применение

Термоэлектрические материалы

Химические источники тока

Лазерные материалы

Окислители

Дефектоскопия

Пиротехника

Электроника

Металлургия

Ядерная электроника

Сушка газов

Медицина

Смазочные материалы

Регенерация кислорода в автономных аппаратах

Силикатная промышленность

Прочие области

  1. Изотопы лития

Ванадий (vanadium), v, химический элемент v группы периодической системы Менделеева; атомный номер 23, атомная масса 50,942; металл серо-стального цвета. Природный В. состоит из двух изотопов: 51 v (99,75%) и 50 v (0,25%); последний слабо радиоактивен (период полураспада Т 1/2 = 10 14 лет). В. был открыт в 1801 мексиканским минералогом А. М. дель Рио в мексиканской бурой свинцовой руде и назван по красивому красному цвету нагретых солей эритронием (от греч. erythr o s - красный). В 1830 шведский химик Н. Г. Сефстрём обнаружил новый элемент в железной руде из Таберга (Швеция) и назвал его В. в честь древнескандинавской богини красоты Ванадис. Английский химик Г. Роско в 1869 получил порошкообразный металлический В. восстановлением vcl 2 водородом. В промышленном масштабе В. добывается с начала 20 в.

Содержание В. в земной коре составляет 1,5-10 -2 % по массе, это довольно распространённый, но рассеянный в породах и минералах элемент. Из большого числа минералов В. промышленное значение имеют патронит, роскоэлит, деклуазит, карнотит, ванадинит и некоторые др. Важным источником В. служат титаномагнетитовые и осадочные (фосфористые) железные руды, а также окисленные медно-свинцово-цинковые руды. В. извлекают как побочный продукт при переработке уранового сырья, фосфоритов, бокситов и различных органических отложений (асфальтиты, горючие сланцы).

Физические и химические свойства. В. имеет объёмноцентрированную кубическую решётку с периодом a = 3,0282 å. В чистом состоянии В. ковок, легко поддаётся обработке давлением. Плотность 6,11 г / см 3 , t пл 1900 ± 25°С, t кип 3400°С; удельная теплоёмкость (при 20-100°С) 0,120 кал / гград ; термический коэффициент линейного расширения (при 20-1000°С) 10,6·10 -6 град -1 , удельное электрическое сопротивление при 20 °С 24,8·10 -8 ом · м (24,8·10 -6 ом · см ), ниже 4,5 К В. переходит в состояние сверхпроводимости. Механические свойства В. высокой чистоты после отжига: модуль упругости 135,25 н / м 2 (13520 кгс / мм 2), предел прочности 120 нм / м 2 (12 кгс / мм 2), относительное удлинение 17%, твердость по Бринеллю 700 мн / м 2 (70 кгс / мм 2). Примеси газов резко снижают пластичность В., повышают его твёрдость и хрупкость.

При обычной температуре В. не подвержен действию воздуха, морской воды и растворов щелочей; устойчив к неокисляющим кислотам, за исключением плавиковой. По коррозионной стойкости в соляной и серной кислотах В. значительно превосходит титан и нержавеющую сталь. При нагревании на воздухе выше 300°С В. поглощает кислород и становится хрупким. При 600-700°С В. интенсивно окисляется с образованием пятиокиси v 2 o 5 , а также и низших окислов. При нагревании В. выше 700°С в токе азота образуется нитрид vn (t пл 2050°С), устойчивый в воде и кислотах. С углеродом В. взаимодействует при высокой температуре, давая тугоплавкий карбид vc (t пл 2800°С), обладающий высокой твёрдостью.

В. даёт соединения, отвечающие валентностям 2, 3, 4 и 5; соответственно этому известны окислы: vo и v 2 o 3 (имеющие основной характер), vo 2 (амфотерный) и v 2 o 5 (кислотный). Соединения 2- и 3-валентного В. неустойчивы и являются сильными восстановителями. Практическое значение имеют соединения высших валентностей. Склонность В. к образованию соединений различной валентности используется в аналитической химии, а также обусловливает каталитические свойства v 2 o 5 . Пятиокись В. растворяется в щелочах с образованием ванадатов .

Получение и применение. Для извлечения В. применяют: непосредственное выщелачивание руды или рудного концентрата растворами кислот и щелочей; обжиг исходного сырья (часто с добавками nacl) с последующим выщелачиванием продукта обжига водой или разбавленными кислотами. Из растворов методом гидролиза (при рН = 1-3) выделяют гидратированную пятиокись В. При плавке ванадийсодержащих железных руд в домне В. переходит в чугун, при переработке которого в сталь получают шлаки, содержащие 10-16% v 2 o 5 . Ванадиевые шлаки подвергают обжигу с поваренной солью. Обожжённый материал выщелачивают водой, а затем разбавленной серной кислотой. Из растворов выделяют v 2 o 5 . Последняя служит для выплавки феррованадия (сплавы железа с 35-70% В.) и получения металлического В. и его соединений. Ковкий металлический В. получают кальциетермическим восстановлением чистой v 2 o 5 или v 2 o 3 ; восстановлением v 2 o 5 алюминием; вакуумным углетермическим восстановлением v 2 o 3 ; магниетермическим восстановлением vc1 3 ; термической диссоциацией йодида В. Плавят В. в вакуумных дуговых печах с расходуемым электродом и в электроннолучевых печах.

Чёрная металлургия - основной потребитель В. (до 95% всего производимого металла). В. входит в состав быстрорежущей стали, её заменителей, малолегированных инструментальных и некоторых конструкционных сталей. При введении 0,15-0,25% В. резко повышаются прочность, вязкость, сопротивление усталости и износоустойчивость стали. В., введённый в сталь, является одновременно раскисляющим и карбидообразующим элементом. Карбиды В., распределяясь в виде дисперсных включений, препятствуют росту зерна при нагреве стали. В. в сталь вводят в форме лигатурного сплава - феррованадия. Применяют В. и для легирования чугуна. Новым потребителем В. выступает быстро развивающаяся промышленность титановых сплавов; некоторые титановые сплавы содержат до 13% В. В авиационной, ракетной и др. областях техники нашли применение сплавы на основе ниобия, хрома и тантала, содержащие присадки В. Разрабатываются различные по составу жаропрочные и коррозионностойкие сплавы на основе В. с добавлением ti, nb, w, zr и al, применение которых ожидается в авиационной, ракетной и атомной технике. Интересны сверхпроводящие сплавы и соединения В. с ga, si и ti.

Чистый металлический В. используют в атомной энергетике (оболочки для тепловыделяющих элементов, трубы) и в производстве электронных приборов.

Соединения В. применяют в химической промышленности как катализаторы, в сельском хозяйстве и медицине, в текстильной, лакокрасочной, резиновой, керамической, стекольной, фото и кинопромышленности.

Соединения В. ядовиты. Отравление возможно при вдыхании пыли, содержащей соединения В. Они вызывают раздражение дыхательных путей, лёгочные кровотечения, головокружения, нарушения деятельности сердца, почек и т.п.

В. в организме. В. - постоянная составная часть растительных и животных организмов. Источником В. служат изверженные породы и сланцы (содержат около 0,013% В.), а также песчаники и известняки (около 0,002% В.). В почвах В. около 0,01% (в основном в гумусе); в пресных и морских водах 1·10 7 -2·10 7 %. В наземных и водных растениях содержание В. значительно выше (0,16-0,2%), чем в наземных и морских животных (1,5·10 -5 -2·10 -4 %). Концентраторами В. являются: мшанка plumatella, моллюск pleurobranchus plumula, голотурия stichopus mobii, некоторые асцидии, из плесеней - чёрный аспергилл, из грибов - поганка (amanita muscaria). Биологическая роль В. изучена на асцидиях, в кровяных клетках которых В. находится в 3- и 4-валентном состоянии, то есть существует динамическое равновесие.

Физиологическая роль В. у асцидии связана не с дыхательным переносом кислорода и углекислого газа, а с окислительно-восстановительными процессами - переносом электронов при помощи так называемой ванадиевой системы, вероятно имеющей физиологическое значение и у др. организмов.

Лит.: Меерсон Г. А., Зеликман А. Н., Металлургия редких металлов, М., 1955; Поляков А. Ю., Основы металлургии ванадия, М., 1959; Ростокер У., Металлургия ванадия, пер. с англ., М., 1959; Киффер p., Браун Х., Ванадий, ниобий, тантал, пер. с нем., М., 1968; Справочник по редким металлам, [пер. с англ.], М., 1965, с. 98-121; Тугоплавкие материалы в машиностроении. Справочник, М., 1967, с. 47-55, 130-32; Ковальский В. В., Резаева Л. Т., Биологическая роль ванадия у асцидии, «Успехи современной биологии», 1965, т. 60, в. 1(4); Воwen Н. j. М., trace elements in biochemistry, l. - n. y., 1966.

И. Романьков. В. В. Ковальский.

Ванадий - химический элемент 5-й группы периодической системы химических элементов Дмитрия Ивановича Менделеева. Название элемента «Ванадий» произошло от имени древнескандинавской богини красоты - «Ванадис». Причиной этому стал цвет солей. Ванадий - твердый металл серо-стального цвета. Он довольно устойчив к действию воды и множества кислот. В земной коре ванадий рассеян, часто сопутствует железу, а железные руды, являются очень важным источником промышленного производства ванадия.

Ванадий является, пожалуй, самым редким представителем черных металлов на Земле. Основная область применения данного металла - это производство марочных сталей, а также чугунов. Добавки ванадия способны обеспечить высокую характеристику титановым сплавам, что так важно в авиационной и космической промышленности. Ванадий широко использестя как катализатор в процессе получения серной кислоты.

В природе ванадий обычно находится в титаномагнетитовых рудах, иногда встречается в фосфоритах, урансодержащих алевролитах и песчаниках, а которых концентрация ванадия, как правило, не превышает двух процентов. Главными рудными минералами в подобных месторождениях являются ванадиевый мусковит-роскоэлит, а также карнотит. Зачастую ванадий в достаточно большом количестве встречается в бокситах, бурых углях, тяжелых нефтях, битуминозных песках и сланцах. Обычно Ванадий добывается в виде побочного продукта во время извлечения из минерального сырья других, главных компонентов. К примеру, из золы в результате сжигания нефти, или из титановых шлаков во время переработки титаномагнетитовых концентратов.

Ванадий в чистом виде представляет собой светло-серый металл, поддающийся ковке. Ванадий почти вдвое легче железа. Температура плавления металла составляет 1900 градусов по Цельсию, плюс-минус 25 градусов. Температура кипения ванадия равна 3400 градусам по Цельсию. В сухом воздухе при соблюдении комнатной температуры ванадий ведет себя достаточно пассивно с химической точки зрения. Но при достижении высоких температур элемент способен легко соединяться с азотом, кислородом, а также другими атомами.

В химической промышленности соединения Ванадия применяют как катализаторы. Кроме того, ванадий применяется в медицине и сельском хозяйстве, а также в резиновой, текстильной, лакокрасочной, стекольной, керамической промышленности, в производстве приспособлений для фото- и видеосъемки. Ванадий используется как легирующий компонент в создании конструкционных сплавов и сталей, которые применяются в космической и авиационной технике, морском судостроении. Металл используют и в качестве компонента сверхпроводящих сплавов.

Соединения ванадия сами по себе ядовиты и могут принести ущерб организму. Отравление ванадием обычно происходит при вдыхании пыли металла, содержащейся в воздухе. Результатом такого вдыхания может стать раздражение дыхательных путей, головокружение, легочное кровотечение. Ванадиевая пыль воздействует на работу сердца и почек.

Поступая в организм с пищей, ванадий оказывает благотворное воздействие на иммунитет, способствует очищению крови. Некоторые исследования доказывают, что в совокупности с отдельными веществами ванадий способен замедлять процессы старения организма. Больше всего ванадия (как химического элемента) содержится в неочищенном рисе (400 мг/100г), цельном зерне овса (200 мг/100г), а также в фасоли (190 мг/100г), редисе (185 мг/100г) и сыром картофеле (149 мг/100г).

Биологические свойства

Соединения ванадия являются ядовитыми. Отравление веществом возможно после вдыхания ванадиевой пыли. При вдыхании возможно возникновение раздражения дыхательных путей, головокружения, лёгочного кровотечения, нарушается деятельность почек, сердца и других внутренних органов.

В ничтожных количествах ванадий присутствует в тканях практически всех живых организмов на нашей планете. Существует предположение, что ванадий служит средством, которое подавляет образование холестерина в сосудах, но вот нормы употребления данного минерала так и не удалось установить.

Биологическая роль ванадия была изучена на асцидиях. Ванадий в их кровяных клетках находится в трех- и четырехвалентном состоянии, тем самым осуществляется динамическое равновесие:

V III -> V IV ,

V III <- V IV .

У асцидии физиологическая роль ванадия напрямую связывается не с дыхательным процессом переноса углекислого газа и кислорода, а с процессами окисления и восстановления, т.е. переносом электронов с помощью, если можно так сказать, ванадиевой системы, которая, скорее всего, имеет значение на физиологическом уровне, в том числе и у других организмов.

В растениях содержание ванадия гораздо выше, чем в животных: 0,1% - 2% против 1·10 -5% - %1·10 -4 %. Некоторые виды морских жители, особенно это касается мшанок и моллюсков, в частности асцидий, концентрируют ванадий в довольно больших количествах. Ванадий находится у асцидий в плазме крови или в ванадоцитах - специальных клетках существа.

Источниками ванадия являются сланцы и изверженные породы, содержание металла составляет в них примерно 0,013% ванадия. Ванадий содержится также в песчаниках и известняках, где содержание металла составляет около 0,002%. В почвах, по большей части в гумусе, доля ванадия составляет примерно 0,01%. В пресной и морской воде содержание металла примерно 1·107—2·107%.

Судя по всему, ванадий участвует в протекании некоторых окислительных процессов в органических тканях. У человека содержание ванадия в мышечной ткани составляет 2·10 -6 % ванадия, в крови - менее 2·10 -4 % мг/л, в костной ткани – около 0,35·10 -6 %. Всего в здоровом человеческом организме, имеющем массу 70 килограмм, содержится 0,11 миллиграмма ванадия.

Соединения ванадия и сам элемент токсичны. Для человека токсическая доза составляет 0,25 миллиграмма, летального исход при употреблении 2-4 миллиграмм. Для VO5 предельно допустимый коэффициент содержания в воздухе составляет 0,1-0,5 мг/м3.

В прошлом при лечении туберкулеза, анемии и сифилиса применялись некоторые фармацевтические препараты, в составе которых в малых долях присутствовали самые разные соединения ванадия. На сегодняшний день ванадиевые соли применяются в качестве инсектицидов, фунгицидов и дезинфицирующих средств.

Ванадий в организме человека участвует в следующих процессах:

1. Усиливает окисление фосфолипидов, усиливает эритропоэз, Стимулирует костный мозг, участвует в стимулировании пролиферации костных клеток, а также в процессе синтеза костного коллагена, в общем виде способствует росту организма.

2. Снижает активность НаКАтфазы, при этом ванадий делает аденилатциклазу еще боле активной, повышает активность печеночных липолитических ферментов. Ванадий угнетает процесс синтеза эндогенного холестерина в гепатоцитах, снижает концентрацию холестерина и триглицеридов в плазме крови.

3. Ванадий как и некоторые другие микроэлементы (например селен, цинк) дает инсулино-миметический эффект, за счет воздействия на фосфоинозитол 3 киназу (PI3), инсулин-рецепторный субстрат 1-го типа (IRS-1), протеинкиназу В (PKB), активность ГЛЮТ4

Во времена первой мировой войны французские инженеры создали самолет, который стал настоящей сенсацией того времени. Обычно самолеты вооружались пулеметом, а на этом аппарате была установлена самая настоящая пушка, которая держала в страхе всех летчиков Германии. Но возникает вопрос, как можно было поставить пушку на самолет в то время? Ведь грузоподъемность летательных аппаратов первой мировой войны была очень и очень низкой. В последствии оказалось, что все дело в ванадии, это он помог установить на самолет полноценную пушку. Авиационные пушки французских самолетов изготавливались из ванадиевой стали. Имея совсем не большой вес, орудия обладали прекрасной прочностью, которая позволяла вести ошеломляюще сокрушительный на те времена огонь по вражеским самолетам.

Ванадий, как и другой химический элемент - бор – дважды пережил свое открытие. Фактически он был открыт еще в 1781 году в свинцовых рудах Андресом Мануэлем Дель Рио, который бы профессором минерологи в Мехико. И лишь спустя двадцать девять лет, в 1830 году ванадий был заново обнаружен в железной руде ученым-химиком Нильсом Сёфстремом из Швеции. Окончательное название элемент получил от богини красоты скандинавских народов по имени Ванадис, причиной чему стал красивый цвет соеденияя, образующего ванадий.

Интересен еще и тот факт, что некоторые представители подводного растительного и животного мира, например, асцидии, морские ежи и голотурии, буквально «коллекционируют» ванадий. Эти создания извлекают химический элемент из окружающей среды каким-то не понятным для человеческого ума способом. Отдельные ученые предполагают, что у этих живых организмов ванадий служит той же цели, что и железо в крови высших существ, в том числе и человека, т.е. помогает крови впитывать кислород, или, говоря образно, помогает ей «дышать».

В организме здорового взрослого человека содержание ванадия составляет около 10-25мг, большая доля элемента приходится на зубы, костную ткань, жировую ткань на плазму крови (до 10 мкг/л), легкие (около 0,6 мг/кг).

Суточная потребность в химическом элементе для взрослых составляет 1.8 мг (Food and Nutrition board. 2004 by the National Academy of Sciences).

Ванадий проникает в организм по большей части с пищей: рис, зеленый салат, фасоль, редис, укроп, горох, черный перец, грибы, петрушка, мясо.

Неоднократные исследования установили связь ванадия с психическим состоянием человека. Научно доказан тот факт, что при шизофрении содержание ванадия в крови больного значительно повышается.

По мнению американских ученых-медиков, недостаток ванадия в человеческом организме связан с развитием сахарного диабета, потому что его нехватка, как и в случае с недостатком цинка и хрома – это один из самых важных индикаторов симптомов сахарного диабета.

История

Ванадий как примесь в составе свинцовой руды рудника в Зимапане был открыт испанским минерологом А. М. Дель Рио в 1801году. Дель Рио назвал новый элемент эритронием («erythros» - от греческого «красный»), т.к. его соединения имели красный цвет. Вот как всемирно известный шведский ученый-химик Берцелиус описывает историю открытия элемента ванадий:

«В давние времена далеко на севере жила чудесная Ванадис, всеми любимая прекрасная богиня. Однажды в ее дверь кто-то постучал. Но богиня сначала не отреагировала, т.к. очень удобно устроилась в кресле. Но стук не повторился, и кто-то отошел от двери. Ванадис стало интересно, что же это за такой скромный посетитель? Богиня открыла окно и взглянула на улицу. Незнакомцем оказался некто Вёлер, который быстро удалялся от ее замка. Спустя несколько дней все повторилось, кто-то снова постучал в дверь, но теперь стук не утихал до тех пор, пока Богиня не подошла и не открыла двери. Перед ней оказался красивый молодец Нильс Сёвстрем. Почти сразу они полюбили друг друга, и через какое-то время у них родился сын, которого они назвали Ванадий. Так и был назван тот совершенно новый металл, найденный в 1831 году шведским ученым химиком и физиком Нильсом Сёвстремом».

Но в данной легенде есть одна неточность. Первым, кто постучал в дверь богине был минералог Андрее Мануэль дель Рио, а не немецкий ученый Вёлер. И сначала испанский ученый назвал элемент «панхромом» («всецветный»), т.к. соединения этого нового металла были окрашены в самые разные цвета, и только затем сменил название на «эритроний», т.е. «красный.

Но дель Рио не смог научно доказать свою находку. Более того, спустя год после открытия он подумал, что новый элемент – это ничто иное, как хром, открытый немногим ранее. Точно такую же ошибку совершил и немецкий ученый Вёлер, «скромный посетитель», который слишком мало стучал в дверь богини Ванадис.

Только через почти тридцать лет состоялось настоящее рождение ванадия. Отцом основателем данного химического элемента и нового металла считается молодой ученый из Швеции Нильс Сёвстрем. В то время на родине Сёвстрема как раз начала развиваться металлургия. Заводы появлялись в разных концах страны. Было замечено, что металл, который выплавляли из одних руд, получался хрупким, а металл, выплавленный из других – достаточно пластичным. И не для кого не было понятно, в чем тут подвох. Нильс Сёвстрем решил попробовал найти ответ.

В процессе исследования химического состава руд, из которых получался высококачественный металл, Сёвстрем после проведения многих опытов доказал, что в таких рудах содержится элемент, который в свое время обнаружил дель Рио и ошибочно принял за хром. Новый металл назвали ванадием.

Ни Вёлеру, ни дель Рио не было суждено стать «отцами основателями» нового химического элемента, хоть они и были к этому близки. После успеха шведского ученого немец Вёлер написал своему другу: «Я был просто ослом, как я мог проглядеть новый элемент в этой бурой свинцовой руде? Все-таки Берцелиус был прав, когда так иронично описывал мою слабую неудачную попытку постучаться в дворец богини Ванадис.

На территории России ванадий впервые нашли в 1834 году на Урале в свинцовой руде Березовского рудника. В 1839 году ванадий был найден в пермских песчаниках. Уже в то далекое время инженер Шубин высказывал мнение о благотворном влиянии примеси ванадия на качество медных и железных сплавов. Он писал, что черная медь, гаркупфер, штыковая медь и медистый чугун составляют сплавы с ванадием, и, что, вероятнее всего, именно присутствие ванадия дает им такую прочность.

Спустя еще много лет никто не мог в чистом виде выделить ванадий. Лишь в 1869 г. англичанин Генри Роско после долгих поисков сумел выделить чистый металлический ванадий. Но лишь в те времена его можно было считать чистым, т.к. содержание посторонних примесей находилось в районе 4%. Даже такая доля способна существенно изменить свойства металла. Чистый ванадий представляет собой серебристо-серый металл, обладает высокой пластичностью, поддается ковке.

Нахождение в природе

Ванадий довольно часто встречается в недрах земли в качестве составной части титаномагнетитовых руд, реже дефицитный металл можно встретить в фосфоритах, еще реже в составе урансодержащих алевролитов и песчаников, концентрация ванадия в данных природных образованиях не превышает 2-х процентов. Главными рудными минералами в месторождениях ванадия являются ванадиевый мусковит-роскоэлит и карнотит. В бокситах, бурых углях, тяжелых нефтях, а также в битуминозныхпесках и сланцах также иногда могут присутствовать довольно значительные доли редкого металла.

Самые высокие показатели среднего содержания ванадия в породах магматического типа были отмечены в базальтах и габбо. Примерное значение концентрации в данных породах колеблется от 230 до 290 грамм на тонну веса. Среди осадочных пород ванадий наиболее часто можно встретить в биолитах (асфальтиты, угли и др.), бокситах и железных рудах. За счет близости ионных радиусов ванадия с распространенными в магматических породах железом и титаном, в гипогенных процессах ванадий всегда остается в рассеянном состоянии, именно поэтому металл не образует собственных минералов. Носители ванадия - это многочисленные минералы слюды, титана (сфен, ильменит, рутил, титаномагнетит), гранаты и пироксены, которые обладают повышенной изоморфной ёмкостью в отношении ванадия.

Как правило, ванадий добывается в виде побочного продукта при извлечении и переработке из минерального сырья других полезных веществ. К примеру, очень часто ванадий получают из титановых шлаков в процессе переработки титаномагнетитовых концентратов, иногда из золы после сжигания нефти, угля и других горючих ископаемых.

Производителями ванадия в мировом масштабе выступают такие государства, как Южно-Африканская республика, Соединенные Штаты Америки, Российская федерация (где основные разработки дефицитного металла расположены в районе Уральского хребта), а также Финляндия. Если судить о количестве ванадия по его учтенным запасам, лидирующие места на глобальном уровне занимают такие страны, как ЮАР, Россия и Австралия.

Интересно заметить, что хотя доля ванадия в земной коре довольно существенна и составляет около 0,2 процентов (что в 15 раз превышает количество свинца и в 2000 раз превышает суммарное количество серебра), металл, как ни странно, относят к разряду дефицитных, потому что его скопления встречаются довольно редко. Если какая-либо руда содержит в своем составе хотя бы один процент ванадия, она сразу считается очень обогащенной. В промышленной переработке зачастую встречаются случаи, когда ванадий добывают из руды с концентрацией ценного металла всего в 0,1 процента от общей массы.

Содержание ванадия, как химического элемента, в земной коре нашей планеты составляет 1,6*10 -2 %, в воде всех мировых океанов около 3*10-7%. Важнейшими минералами, которые представляют собой соединениями ванадия, являются ванадинит Pb 5 (VO 4) 3 Cl, патронит V(S 2) 2 и несколько других. Основным источником получения ванадия являются железные руды, в которых ванадий встречается в качестве примеси.

Применение

Ванадий чаще всего используется в качестве легирующей добавки в производстве жаропрочных, коррозийностойких и износоустойчивых сплавов, в первую очередь это касается специальных сталей. Кроме того, ванадий используют в качестве одного из компонентов при получении магнита. Ванадий в металлургии обозначают буквой Ф.

Основным потребителем ванадия выступает черная металлургия, в которой используется около 95% всего добываемого металла. В составе быстрорежущей стали, и ее заменителей также присутствует ванадий, он входит в состав инструментальных малолегированных и в некоторые виды конструкционных сталей. Даже присутствие 0,15 % - 0,25 % ванадия в составе сплава, прочность стали резко повышается, повышаются показатели вязкости, сопротивления усталости и износоустойчивости металла. Введенный в стать ванадий, является одновременно и карбидообразующим, и раскисляющим элементом. Карбиды ванадия распределяются в виде дисперсных включений, препятствуя тем самым росту зерна в процессе нагревания стали. Ввод ванадия в сталь происходит в виде феррованадия, который является одной из форм лигатурного сплава.

Ванадий применяется и в процессе легирования чугуна. Промышленность титановых сплавов, которая стремительно развивается в последнее время, является новым, но довольно существенным потребителем ванадия на современном этапе. Необходимо отметить, что отдельные сплавы титана могут содержать до 13% ванадия. Сплавы, основанные на ниобии, хроме и тантале, содержащие при этом присадки ванадия, нашли применение в ракетной, авиационной и других сферах индустрии. Также в авиационной, ракетной и даже атомной технике в ближайшее время ожидается использование различных по составу и свойствам коррозийностойких и жаропрочных сплавов в основе которых лежит ванадий, а также добавки Zr, Ti, W, Al и Nb. Такие сплавы уже переходят в стадию промышленного изготовления. Огромный интерес вызывают сверхпроводящие соединения и сплавы на основе ванадия с Ti, Si и Ga.

Ванадий применяется в качестве промежуточного материала (прослойки) в процессе плакирования стали, а также тугоплавких металлов циркониевыми, титановыми сплавами, со сплавами благородных металлов.

За счет высокой коррозионной стойкости в самых агрессивных средах, ванадий становится перспективным материалом в химическом машиностроении и др. отраслях.

Металлический ванадий в чистом виде нередко используется в атомной энергетике, из него изготавливают оболочку для тепловыделяющих элементов, а также различные трубы. Ванадий присутствует и в некоторых электронных приборах. В процессе термохимического разложения воды применяется хлорид ванадия, этот процесс относится к области ядерной энергетики, например, цикл хлоридного ванадия «General Motors» в Соединенных Штатах Америки.

Самый распространенный оксид ванадия V 2 O 5 зачастую используется в качестве эффективного катализатора, к примеру, в процессе окисления сернистого газа SO 2 и превращения его в серный газ SO 3 при получении серной кислоты. Оксид ванадия применяют в качестве катализатора также при окислении аммиака и др.

Соединения и сплавы ванадия находят применение в самых разных отраслях экономики: стекольной, лакокрасочной, текстильной промышленности, в медицине, сельском хозяйстве, в производстве фото- и кинооборудования и других сферах. В аккумуляторах и мощных литиевых батареях пятиокись ванадия применяется довольно широко, здесь она служит катодом, т.е. положительным электродом. В резервных батареях в качестве положительного электрода выступает ванадат серебра. При изготовлении электронно-лучевых трубок применяются люминесцентные материалы, т.е ванадаты иттрия. Ванадат натрия является лазерным материалом, который широко применяется как активные элементы в твердотельных лазерах.

Производство

При промышленном получении ванадия сначала готовят концентрат из железных руд с примесью металла, содержание ванадия в данном концентрате составляет примерно 8-16%. Затем при помощи окислительной обработки ванадий переводится в степень окисления +5, т.е высшую степень окисления, в результате чего от полученной массы отделяют ванадат натрия (т.е. NaVO 3), который легко растворяется в воде. Раствор после этого подкисляют при помощи серной кислоты, в последствии выпадает осадок. После просушивания данного осадка получившаяся консистенция содержит более чем 90% ванадия.

Первичный концентрат восстанавливают доменным способом в печах, после чего получается концентрат ванадия, используемый далее в процессе выплавки сплава железа и ванадия, т.е. феррованадия (феррованадий содержит примерно от 35% до 70% чистого ванадия). Ванадий как металл можно производить путем восстановления хлорида ванадия водородом, а также при помощи термической диссоциации VI2 и кальцийтермического восстановления оксидов ванадия (например, V 2 O 5 или V 2 O 3) или другими методами.

Металлический ванадий, поддающийся ковке, получают также при помощи кальциетермического восстановления чистых V 2 O 3 или V 2 O 5 ; путем восстановления V 2 O 5 с использованием алюминия; путем вакуумного углетермического восстановления V 2 O 3 ; путем магниетермического восстановления VCl 3 или путем термической диссоциации йодида ванадия. Ванадий плавят в дуговых вакуумных печах с расходуемым электродом, а также в электроннолучевых печах.

Ванадий извлекается из содержащей металл руды или ее концентратов путем непосредственного выщелачивания при помощи растворов кислот либо щелочей, или методом выщелачивания разбавленными кислотами или водой продукта окислительного обжига (его смешивают с поваренной солью). Из растворов оксид ванадия V2O5 (V)извлекают гидролизом, он используется при выплавке феррованадия и производстве металлического ванадия.

Железные руды, содержащие ванадий, перерабатываются на сталь, в результате чего остаются ванадиевые шлаки. Эти шлаки подвергаются обжигу в смеси, в составе которой есть NaCl. Затем полученный продукт выщелачивают с использованием воды, после этого его выщелачивают слабым раствором серной кислоты, в результате получают технический ванадиевый оксид (V).

Металлический ванадий производят или путем непосредственного восстановления оксида ванадия, или в две стадии: сперва восстанавливают оксиды до низшего оксида используя один восстановитель, а после низший оксид восстанавливают до металла.

Существует несколько способов получения металлического ванадия: это и кальциетермический, когда ковкий ванадий производят путем восстановления оксидов ванадия при помощи кальция, и алюминотермический, при котором роль основного восстановителя играет алюминий, и вакуумное углетермическое восстановление оксидов ванадия (наиболее перспективно использование углерода), это и хлоридный метод, когда восстанавливают хлорид ванадия (VCl3).

Основным сырьем при производстве ванадия являются железные руды, в составе которых присутствует и дефицитный ванадий. Сначала следует процесс обогащения железной руды, далее полученные концентраты перерабатываются вплоть до момента, пока ни станет образовываться оксид ванадия (V). Из полученного оксида ванадий можно получить таким способом, как металлотермия:

V2O5 + 5Ca -> 900 градусов по Цельсию -> 2V + 5CaO.

Высоко чистый ванадий можно получить путем восстановления хлоридов ванадия с использованием водорода:

VCl4 + 2H2 = V + 4HCl;

Высоко чистый ванадий можно получить путем магнийтермического восстановления хлорида ванадия (III):

2VCl3 + 3Mg = 2V + 3MgCl2;

Высоко чистый ванадий можно получить путем термической диссоциации VI2:

Высоко чистый ванадий можно получить еще и путем электролиза расплавов галогенидов ванадия:

VCl2 -> электролиз -> V + Cl2.

Физические свойства

По своему внешнему виду ванадий, как металл, очень похож на сталь. Ванадий сам по себе достаточно твердый, но вместе с тем он обладает хорошей пластичностью.

Теперь давайте рассмотрим физические свойства ванадия в конкретных цифрах. Объемно-центрированная кубическая решетка ванадия имеет период a=3,0282. Ванадий в чистом виде довольно хорошо поддается ковке, металл можно легко подвергать обработке под давлением. Плотность ванадия как вещества составляет 6,11 грамм на сантиметр кубический. Температура плавления металла равна 1900 градусам по Цельсию, температура кипения составляет 3400 градуса по Цельсию. Удельная теплоемкость ванадия при температуре от 20 до 100 градусов по Цельсию равна 0,120 кал/гград. Металл имеет термический коэффициент линейного расширения равный 10,6·10 -6 град -1 , при температуре от 20 до 1000 градусов Цельсия. Ванадий имеет удельное электрическое сопротивление 24,8·10 -6 ом·см (24,8·10 -8 ом·м) при температуре 20 градусов по Цельсию. Ниже тока в 4,5 кВ металл переходит в состояние сверхпроводимости.

Ванадий высокой чистоты после процедуры отжига имеет следующие механические свойства: значение модуля упругости составляет 13520 кгс/мм 2 (135,25 н/м 2), предел прочности металла равен 12 кгс/мм 2 (120 нм/м 2), относительное удлинение вещества равно 17-ти процентам, твердость металла по Бринеллю составляет 70 кгс/мм 2 (700 мн/м 2). Ванадий часто имеет примеси других элементов, в частности газов. Примеси газов в составе ванадия воздействуют на металл не самым лучшим образом. Они снижают пластичность металла, в то же врем, делая ванадий еще более твердым и хрупким.

Ванадий, встречающийся в природе, является смесью, состоящей из двух нуклидов: стабильного нуклида 51V, который составляет 99,76% по массе, и слабо радиоактивного нуклида 52V, период полураспада которого равен более чем 3,9·10 17 лет. При этом конфигурация двух внешних электронных слоев имеет вид 3s 2 p 6 d 3 4s 2 . В периодической системе Дмитрия Ивановича Менделеева химический элемент ванадий расположен в четвертом периоде в группе VВ. Ванадий способен образовывать соединения в степени окисления от + 2 до + и в валентности от II до V.

Радиус нейтрального атома химического элемента ванадий составляет 0,134 нм, радиус его ионов равен V 5+ — 0,050-0,068 нм, V 4+ - 0,067-0,086 нм, V 3+ - 0,078 нм, V 2+ - 0,093 нм. Энергии последовательной ионизации атома химического элемента ванадий характеризуются значениями 6.74; 14.65; 29.31; 48.6 и 65.2 эВ. Электроотрицательность ванадия по шкале Полинга составляет 1,63.

Химические свойства

Ванадий - элемент с высокой химической стойкостью, в нормальных условиях он инертен. При комнатной температуре на ванадий не воздействует воздух, морская вода и растворы щелочей, металл устойчив к неокисляющим кислотам, кроме плавиковой кислоты. Коррозийная стойкость ванадия в соляной и серной кислотах намного выше, чем у нержавеющей стали и титана.

При нагревании ванадия до температуры 300 градусов по Цельсию, он начинает поглощать кислород и становится довольно хрупким. При нагревании до температуры 600-700 градусов по Цельсию, ванадий начинает интенсивно окисляться, образуя пятиокись V 2 O 5 и низшие оксиды. При нагревании химического элемента выше 700 градусов по Цельсию в токе азота начинает образовываться нитрид VN (tпл 2050°C), он устойчив и в кислотах, и в воде. При достижении высокой температуры ванадий начинает взаимодействовать с углеродом, при этом образуется тугоплавкий карбид VC (температура плавления 2800 градусов по Цельсию), который обладает очень высокой твердостью.

Ванадий даёт соединения 2-й, 3-й, 4-й и 5-й валентностей, в соответствии с этим известны следующие окислы: VO и V 2 O 3 (основной характер), VO 2 (амфотерный), V 2 O 5 (кислотный). Соединения двух- и трехвалентного ванадия неустойчивы и выступают сильными восстановителями. Соединения высших валентностей имеют практическое значение. В аналитической химии используется способность ванадия образовывать соединений различной валентности, к тому же данный факт обусловливает каталитические свойства V 2 O 5 . Пятиокись ванадия способна растворяться в щелочах, образуя ванадаты.

Ванадий образует с галогенами летучие галогениды составов которых выглядит так VX 2 (X = F, Cl, Br, I), VX 4 (X = F, Cl, Br), VX 3 , VF 5 , а также несколько оксогалогенидов (например, VOF 3 , VOCl 2 , VOCl и др.).

Давайте рассмотрим основные химические реакции с ванадием.

При нагревании до температуры выше 600 градусов по Цельсию ванадий взаимодействует с кислородом, в результате чего образуется оксид ванадия (V):

4V + 5O2 = 2V2O5.

Оксид ванадия (IV) образуется и при горении элемента на воздухе:

При достижении температуры выше 700 градусов по Цельсию ванадий реагирует с азотом, образуя нитрид:

При нагревании ванадия до температуры 200–300 градусов по Цельсию, он реагирует с галогенами. С хлором образуется хлорид ванадия (IV), с фтором - фторид ванадия (V), с йодом – йодид ванадия (II), с бромом – бромид ванадия (III),:

V + 2Cl2 = VCl4,

2V + 5F2 = 2VF5,

V + I 2 = VI 2,

2V + 3Br 2 = 2VBr 3.

Ванадий при достижении 800 градусов по Цельсию с углеродом образует карбид:

При спекании с кремнием и бором на высоких температурах образуется силицид и борид:

V + 2B = VB2.

При нагревании ванадий реагирует с фосфором и серой:

V + P = VP, может быть образование VP2,

2V + 3S = V2S3, может быть образование VS и VS2.

С водородом ванадий образует твердые растворы.

Ванадий располагается до водорода в ряду напряжений металлов, но, за счет защитной пленки, он довольно инертен, при этом не растворяется в воде, соляной кислоте, на холоде не вступает в реакции с разбавленной азотной и серной кислотами.

Ванадий реагирует с плавиковой кислотой, образуя фторидный комплекс:

2V + 12HF = 2H3 + 3H2;

Реагирует с концентрированной азотной кислотой, образуя нитрат ванадина:

V + 6HNO3 = VO2NO3 + 5NO2 + 3H2O;

Вступает в реакцию с концентрированной серной кислотой, образуя сульфат ванадила:

V + 3H2SO4 = VOSO4 + 2SO2 + 3H2O

А также с царской водкой, образуя хлорид ванадина:

3V + 5HNO3 + 3HCl = 3VO2Cl + 5NO + 4H2O;

Элемент растворяется в смеси плавиковой и азотной кислоты:

3V + 21HF + 5HNO3 = 3H2 + 5NO + 10H2O,

При этом пассивирующую пленку оксида растворяет плавиковая кислота:

V2O5 + 14HF = 2H2 + 5H2O,

а поверхность металла окисляется за счет азотной кислоты окисляет:

6V + 10HNO3 = 3V2O5 + 10NO + 5H2O

Ванадий не реагирует с растворами щелочей, но в расплавах, если есть воздух, он окисляется, образуя ванадаты:

4V + 12KOH + 5O2 = 4K3VO4 +6H2O.

С металлами ванадий способен образовывать различные интерметаллиды и сплавы.