Сопротивление алюминиевого. Удельное сопротивление проводников: меди, алюминия, стали


Электрический ток I в любом веществе создается движением заряженных частиц в определенном направлении за счет приложения внешней энергии (разности потенциалов U). Каждое вещество обладает индивидуальными свойствами, по-разному влияющими на прохождение тока в нем. Эти свойства оцениваются электрическим сопротивлением R.

Георг Ом эмпирическим путем определил факторы, влияющие на величину электрического сопротивления вещества, вывел от напряжения и тока, которая названа его именем. Единица измерения сопротивления в международной системе СИ названа его именем. 1 Ом - это величина сопротивления, замеренного при температуре 0 О С у однородного ртутного столба длиной 106,3 см с площадью поперечного сечения в 1 мм 2 .


Определение

Чтобы оценить и применять на практике материалы для изготовления электротехнических устройств, введен термин «удельное сопротивление проводника» . Добавленное прилагательное «удельное» указывает на фактор использования эталонной величины объема, принятой для рассматриваемого вещества. Это позволяет оценивать электрические параметры разных материалов.

При этом учитывают, что сопротивление проводника возрастает при увеличении его длины и уменьшении поперечного сечения. В системе СИ используется объем однородного проводника с длиной 1 метр и поперечным сечением 1м 2 . В технических расчетах применяется устаревшая, но удобная внесистемная единица объема, состоящая из длины 1 метр и площади 1мм 2 . Формула удельного сопротивления ρ представлена на рисунке.


Для определения электрических свойств веществ, введена еще одна характеристика - удельная проводимость б. Она обратно пропорциональна значению удельного сопротивления, определяет способность материала проводить электрический ток: б =1/ρ.

Как удельное сопротивление зависит от температуры

На величину проводимости материала влияет его температура. Разные группы веществ ведут себя не одинаково при нагреве или охлаждении. Это свойство учитывают в электрических проводах, работающих на открытом воздухе в жару и холод.


Материал и удельное сопротивление провода подбираются с учетом условий его эксплуатации.

Возрастание сопротивления проводников прохождению тока при нагреве объясняется тем, что с повышением температуры металла в нем увеличивается интенсивность передвижения атомов и носителей электрических зарядов во всех направлениях, что создает лишние препятствия для движения заряженных частиц в одну сторону, снижает величину их потока.

Если уменьшать температуру металла, то условия для прохождения тока улучшаются. При охлаждении до критической температуры во многих металлах проявляется явление сверхпроводимости, когда их электрическое сопротивление практически равно нулю. Это свойство широко используется в мощных электромагнитах.

Влияние температуры на проводимость металла используется электротехнической промышленностью при изготовлении обыкновенных ламп накаливания. Их при прохождении тока нагревается до такого состояния, что излучает световой поток. В обычных условиях удельное сопротивление нихрома составляет около 1,05÷1,4 (ом ∙мм 2)/м.

При включении лампочки под напряжение через нить проходит большой ток, который очень быстро разогревает металл. Одновременно возрастает сопротивление электрической цепи, ограничивающее первоначальный ток до номинального значения, необходимого для получения освещения. Таким способом осуществляется простое регулирование силы тока через нихромовую спираль, отпадает необходимость применения сложной пускорегулирующей аппаратуры, используемой в светодиодных и люминесцентных источниках.

Как используется удельное сопротивление материалов в технике

Цветные благородные металлы обладают лучшими свойствами электрической проводимости. Поэтому ответственные контакты в электротехнических устройствах выполняют из серебра. Но это увеличивает конечную стоимость всего изделия. Наиболее приемлемый вариант - использование более дешевых металлов. Например, удельное сопротивление меди, равное 0,0175 (ом ∙мм 2)/м, вполне подходит для таких целей.

Благородные металлы - золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой пластичностью, а металлы платиновой группы - тугоплавкостью и, как и золото, химической инертностью. Эти достоинства благородных металлов сочетаются.

Медные сплавы, обладающие хорошей проводимостью, используются для изготовления шунтов, ограничивающих протекание больших токов через измерительную головку мощных амперметров.

Удельное сопротивление алюминия 0,026÷0,029 (ом ∙мм 2)/м чуть выше, чем у меди, но производство и стоимость этого металла ниже. К тому он же легче. Это объясняет его широкое применение в энергетике для изготовления проводов, работающих на открытом воздухе, и жил кабелей.

Удельное сопротивление железа 0,13 (ом ∙мм 2)/м также допускает его применение для передачи электрического тока, но при этом возникают бо́льшие потери мощности. Стальные сплавы обладают повышенной прочностью. Поэтому в алюминиевые воздушные провода высоковольтных линий электропередач вплетают стальные нити, которые предназначены для противостояния нагрузкам, действующим на разрыв.

Особенно актуально это при образовании наледи на проводах или сильных порывах ветра.

Часть сплавов, например, константин и никелин обладают термостабильными резистивными характеристиками в определенном диапазоне. У никелина удельное электрическое сопротивление практически не меняется от 0 до 100 градусов по Цельсию. Поэтому спирали для реостатов изготавливают из никелина.

В измерительных приборах широко применяется свойство строгого изменения значений удельного сопротивления платины от ее температуры. Если через платиновый проводник пропускать электрический ток от стабилизированного источника напряжения и вычислять значение сопротивления, то оно будет указывать температуру платины. Это позволяет градуировать шкалу в градусах, соответствующих значениям Омам. Этот способ позволяет измерять температуру с точностью до долей градусов.


Иногда для решения практических задач требуется узнать полное или удельное сопротивление кабеля . Для этого в справочниках на кабельную продукцию приводятся значения индуктивного и активного сопротивления одной жилы для каждого значения поперечного сечения. С их помощью рассчитываются допустимые нагрузки, выделяемая теплота, определяются допустимые условия эксплуатации и подбираются эффективные защиты.

На удельную проводимость металлов оказывает влияние способ их обработки. Использование давления для пластической деформации нарушает структуру кристаллической решетки, увеличивает число дефектов и повышает сопротивление. Для его уменьшения применяют рекристаллизационный отжиг.

Растяжения или сжатия металлов вызывают в них упругую деформацию, от которой уменьшаются амплитуды тепловых колебаний электронов, а сопротивление несколько снижается.

При проектировании систем заземления необходимо учитывать . Оно имеет отличия в определении от вышеперечисленного метода и измеряется в единицах системы СИ - Ом∙метр. С его помощью оценивают качество растекания электрического тока внутри земли.



На удельную проводимость грунта влияют многие факторы, включая влажность почвы, плотность, размеры ее частиц, температуру, концентрацию солей, кислот и щелочей.

Содержание:

В электротехнике одними из главных элементов электрических цепей являются провода. Их задача состоит в том, чтобы с минимальными потерями пропустить электрический ток. Экспериментальным путем уже давно определено, что для минимизации потерь электроэнергии провода лучше всего изготавливать из серебра. Именно этот металл обеспечивает свойства проводника с минимальным сопротивлением в омах. Но поскольку этот благородный металл дорог, в промышленности его применение весьма ограничено.

А главными металлами для проводов стали алюминий и медь. К сожалению, сопротивление железа как проводника электричества слишком велико для того, чтобы из него получился хороший провод. Несмотря на более низкую стоимость, оно применяется только как несущая основа проводов линий электропередачи.

Такие разные сопротивления

Сопротивление измеряется в омах. Но для проводов эта величина получается очень маленькой. Если попытаться провести замер тестером в режиме измерения сопротивления, получить правильный результат будет сложно. Причем, какой бы провод мы ни взяли, результат на табло прибора будет мало отличаться. Но это не значит, что на самом деле электросопротивление этих проводов будет одинаково влиять на потери электроэнергии. Чтобы в этом убедиться, надо проанализировать формулу, по которой делается расчет сопротивления:

В этой формуле используются такие величины, как:

Получается, что сопротивление определяет сопротивление. Существует сопротивление, вычисляемое по формуле с использованием другого сопротивления. Это удельное электрическое сопротивление ρ (греческая буква ро) как раз и обуславливает преимущество того или иного металла как электрического проводника:

Поэтому, если применить медь, железо, серебро или какой-либо иной материал для изготовления одинаковых проводов или проводников специальной конструкции, главную роль в его электротехнических свойствах будет играть именно материал.

Но на самом деле ситуация с сопротивлением сложнее, чем просто вычисления по формулам, приведенным выше. Эти формулы не учитывают температуру и форму поперечника проводника. А при увеличении температуры удельное сопротивление меди, как и любого другого металла, становится больше. Весьма наглядным примером этого может быть лампочка накаливания. Можно замерить тестером сопротивление ее спирали. Затем, измерив силу тока в цепи с этой лампой, по закону Ома вычислить ее сопротивление в состоянии свечения. Результат получится значительно больше, нежели при измерении сопротивления тестером.

Так же и медь не даст ожидаемой эффективности при токе большой силы, если пренебречь формой поперечного сечения проводника. Скин-эффект, который проявляется прямо пропорционально увеличению силы тока, делает неэффективными проводники с круглым поперечным сечением, даже если используется серебро или медь. По этой причине сопротивление круглого медного провода при токе большой силы может оказаться более высоким, чем у плоского провода из алюминия.

Причем, даже если их площади поперечников одинаковы. При переменном токе скин-эффект также проявляется, увеличиваясь по мере роста частоты тока. Скин-эффект означает стремление тока течь ближе к поверхности проводника. По этой причине в некоторых случаях выгоднее использовать покрытие проводов серебром. Даже незначительное уменьшение удельного сопротивления поверхности посеребренного медного проводника существенно уменьшает потери сигнала.

Обобщение представления об удельном сопротивлении

Как и в любом другом случае, который связан с отображением размерностей, удельное сопротивление выражается в разных системах единиц. В СИ (Международная система единиц) используется ом м, но допустимо использование также и Ом*кВ мм/м (это внесистемная единица измерения удельного сопротивления). Но в реальном проводнике величина удельного сопротивления непостоянна. Поскольку все материалы характеризуются определенной чистотой, которая может изменяться от точки к точке, необходимо было создать соответствующее представление о сопротивлении в реальном материале. Таким проявлением стал закон Ома в дифференциальной форме:

Этот закон, скорее всего, не будет применяться для расчетов в быту. Но в ходе проектирования различных электронных компонентов, например, резисторов, кристаллических элементов он непременно используется. Поскольку позволяет выполнить расчеты, исходя из данной точки, для которой существует плотность тока и напряженность электрического поля. И соответствующее удельное сопротивление. Формула применяется для неоднородных изотропных, а также анизотропных веществ (кристаллов, разряда в газе и т.п.).

Как получают чистую медь

Для того чтобы максимально уменьшить потери в проводах и жилах кабелей из меди, она должна быть особо чистой. Это достигается специальными технологическими процессами:

  • на основе электронно-лучевой, а так же зонной плавки;
  • многократной электролизной очисткой.

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой? и представляющего собой длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением? = 0,016 Ом мм2/м обладает серебро. Приведем среднее значение удельного соп ротивления некоторых проводников:

Серебро - 0,016, Свинец - 0,21, Медь - 0,017, Никелин - 0,42, Алюминий - 0,026, Манганин - 0,42, Вольфрам - 0,055, Константан - 0,5, Цинк - 0,06, Ртуть - 0,96, Латунь - 0,07, Нихром - 1,05, Сталь - 0,1, Фехраль - 1,2, Бронза фосфористая - 0,11, Хромаль - 1,45.

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R - сопротивление, Ом; удельное сопротивление, (Ом мм2)/м; l - длина провода, м; s - площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Таблица 1.


Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30 2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78 0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом мм2)/м, то получим R = 0,017 30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78 0,52 = 0,195 мм2. А длина провода будет l = 0,195 40/0,42 = 18,6 м.

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.


В итоге сопротивление проводника известной длины и сечения будет равно


Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.


Внедряя в металлы различные добавки, получают новые материалы – сплавы , удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.

Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны . Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС) . Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы . Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем . Это —273°С . Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.


Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии . Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.



Материалы с высокой проводимостью

Медь
Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий
Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо
Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий
Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость
В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.


Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.