Сера и серная кислота, в какие реакции они вступают. Оксид серы (IV)


Слайд 2

Сера

Сера – халькоген, довольно активный неметалл. Сущетсвует три аллотропных модификации серы: ромбическая S8 пластическая моноклинная

Слайд 3

Характеристика серы

Серав ПСХЭ: положение (период, группа) строение атома свойства элемента по периоду / в главной п/гр высший оксид высший гидроксид ЛВС

Слайд 4

Получение

При сливании растворов сероводородной и сернистой кислот: H2SO3 + 2H2S = 3S + 3H2O При неполном сгорании сероводорода (при недостатке воздуха): 2H2S + O2 = 2S + 2H2O

Слайд 5

Химические свойства

Не смачивается и не реагирует с водой. Какокислитель реагирует с: металлами (кроме золота) Hg + S = HgS (обезвреживание разлитой ртути) водородоми неметаллами, у которых с.о. меньше (углеродом, фосфором и т.п.)

Слайд 6

Каквосстановитель реагирует с: кислородом хлором фтором

Слайд 7

S-2(с ме, C, P, H2): C + 2S = CS2 H2 + S = H2S S0 S S+2 S + Cl2 = SCl2 S+4 S + O2 = SO2H2SO3 S+6 S + 3F2 = SF6H2SO4 усиление окислительной способности ионов

Слайд 8

Сероводород

H2S – сероводород. Его раствор в воде называется сероводородной кислотой. Кислота слабая двухосновная, поэтому диссоциирует ступенчато: I: H2S ↔ H+ + HS– II: HS– ↔ H+ + S–

Слайд 9

Проявляет все свойства кислот. Реагирует с: основными оксидами: H2S + CaO = CaS + H2O основаниями: H2S + KOH ↔ KHS + H2O H2S + OH– ↔ HS– + H2O H2S + 2KOH ↔ K2S + H2O H2S + 2OH– ↔ S2– + H2O

Слайд 10

солями: CuCO3 + H2S = CuS + H2CO3 металлами: Ca + H2S = CaS + H2

Слайд 11

Свойства солей

Кислые соли сероводородной кислоты – гидросульфиды (KHS, NaHS) хорошо растворимы в воде. Растворимыми также являются сульфиды щелочных и щёлочноземельных металлов. Сульфиды остальных металлов в воде нерастворимы, а сульфиды меди, свинца, серебра, ртути и др. тяжёлых ме нерастворимы даже в кислотах (кроме азотной).

Слайд 12

Окисление сероводорода

Сероводород легко окисляется кислородом (какпри избытке O2и недостатке?). Бромной водой Br2: H2S + Br2 = 2HBr + S↓ желто- оранжевая бесцветная

Слайд 13

Оксид серы (IV)

SO2 – сернситый газ. Реагирует с водой с образование H2SO3. Типичный кислотный оксид. Взаимодействует с основаниями (образуется соль (сульфит или гидросульфит) и вода) и основными оксидами (образуется только соль).

Слайд 14

Получают: горением серы обжигом пирита действием кислот на сульфиты взаимодействием конц. серной кислоты и тяжелых ме

Слайд 15

Оксид серы (VI)

SO3 - кислотный оксид.Реагирует с водой с образование H2SO4, с основаниями (образуется соль (сульфат или гидросульфат) и вода) и основными оксидами. Получают окислением сернистого газа. Растворяется в серной кислоте с образованием олеума: H2SO4 + nSO3 = H2SO4·nSO3 олеум

Слайд 16

Серная кислота

Серная кислота H2SO4– тяжёлая маслянистая жидкость без запаха и цвета. При концентрации > 70% –серная кислота называется концентрированной, менее 70% - разбавленной. Диссоциация серной кислоты выражается уравнением: H2SO4 ↔ 2H++ SO42–

Слайд 17

Кислота реагирует с амофотерными и основными оксидами и гидроксидами, солями: H2SO4 + BaCl2 = BaSO4↓ + HCl Последняя реакция является качественной на SO42–ион (образуется нерастворимый осадок белого цвета).

Слайд 18

H2SO4 H2SO4 +1 +6 -2 H2SO4 +1 +6 -2 разбавленная концентрированная H+ ― окислитель 2H+ + 2e– = H2 S+6 ― окислитель S+6 +8e– +6e– +2e– S-2 (H2S) S0 (S) S+4 (SO2)

Слайд 19

C разбавленной серной кислотой реагируют все металлы, стоящие в ряду активности до водорода. При реакции образуется сульфат металла и выделяется водород: H2SO4 + Zn = ZnSO4 + H2 Металлы, стоящие после водорода с разбавленной кислотой не реагируют: Cu + H2SO4 ≠

Слайд 20

Концентрированная серная кислота

Металлы, стоящие в ряду активности после водорода, взаимодействуют с концентрированной серной кислотой по следующей схеме: H2SO4(конц.) + Ме = МеSO4 + SO2 + H2O Т.е. образуются: сульфат металла оксид серы(IV) - сернистый газ SO2 вода

Слайд 21

Более активными ме серная кислота при определённых условиях может восстанавливаться до серы в чистом виде или сероводорода. На холоде конц. серная кислота пассивирует железо и алюминий, поэтому их перевозят в железных цистернах: H2SO4(конц.) + Fe ≠ (на холоде)

Слайд 22

Получение серной кислоты

получение SO2(обычно обжигом пирита) окисление SO2 в SO3 в присутсвии катализатора – оксида ванадия(V) растворение SO3 в серной кислоте с получением олеума

Слайд 23

Сульфаты

Соли серной кислоты имеют все свойства солей. Особенным является их отношение к нагреванию: сульфаты активных ме (Na, K, Ba) не разлагаются даже при t > 1000˚C другие (Cu,Al, Fe) даже при небольшом нагревании распадаются на оксид серы(VI) и оксид металла

Слайд 24

Вопросы

в каких реакциях сера играет роль окислителя? восстановителя? какие степени она при этом проявляет? чем обусловлено различие свойств концентрированной и разбавленной серной кислоты? напишите уравнения реакции конц. и разбавленной кислот с медью и цинком. как отличить растворы иодида натрия и сульфата натрия? предложите два способа и напишите уравнения реакций в молекулярном и ионном видах.

Слайд 25

Задания

Какое кол-во сернистого газа можно получить из 10 кг руды, содержащей 48% пирита? Какой объем занимают: а)4 моль SO2? б) 128 г SO3? Осуществите реакции: O2 → S → SO2 → SO3 → H2SO4 → Na2SO4 → BaSO4

Посмотреть все слайды

Кислород с амый распространённый элемент земной коры. Молекула кислорода двухатомна (O 2). Простое вещество – молекулярный кислород – представляет собой газ без цвета и запаха, плохо растворимый в воде. В атмосфере Земли содержится 21 % (по объёму) кислорода. В природных соединениях кислород встречается в виде оксидов (H 2 O, SiO 2) и солей оксокислот. Одно из важнейших природных соединений кислорода – вода, или оксид водорода H 2 O.

Помимо оксидов, кислород способен образовывать пероксиды – вещества, содержащие следующую группировку атомов: –O–O– . Один из важнейших пероксидов – пероксид водорода H 2 O 2 (H–O–O–H). В пероксидах атомы кислорода имеют промежуточную степень окисления минус 1, поэтому эти соединения могут быть как окислителями, так и восстановителями:

Из величин стандартных электродных потенциалов следует, что окисли

тельные свойства H2O2 наиболее сильно проявляются в кислой среде, а восстановительные – в щелочной. Например, пероксид водорода в кислой среде способен окислять те вещества, стандартный потенциал электрохимической системы которых не превышает +1,776 В, и восстанавливать только те, у которых потенциал больше +0,682 В.

Аллотропной модификацией кислорода является озон (O3) – газ со специфическим запахом. Озон получают действием «тихих» электрических разрядов на кислород в специальных приборах – озонаторах. Реакция превращения кислорода в озон требует затраты энергии:

3O2 ↔ 2O3 – 285 кДж.

Обратный процесс – распад озона – протекает самопроизвольно.

Озон – один из сильнейших окислителей; по окислительной активности он уступает только фтору.

При высокой температуре сера взаимодействует с водородом с образованием сероводорода (H2S) – бесцветного газа с характерным запахом гниющего белка. Поскольку эта реакция обратима, то на практике сероводород обычно получают действием разбавленных кислот на сульфиды металлов:

FeS + 2 HCl → H2S + FeCl2 .

Сероводород – сильный восстановитель; при поджигании на воздухе горит голубоватым пламенем:

2 H2S + 3 O2 → 2 SO2 + 2 H2O (в избытке кислорода).

Поэтому смесь сероводорода с воздухом взрывоопасна. При недостатке кислорода сероводород окисляется только до свободной серы:

2 H2S + O2 → 2 S + 2 H2O .

Сероводород очень ядовит и способен вызвать тяжёлые отравления.

Раствор сероводорода в воде обладает свойствами слабой двухосновной кислоты (К1 = 6×10–8, К2 = 1×10–14). Средние соли сероводородной кислоты – сульфиды – можно получить непосредственным взаимодействием металлов с серой. Малорастворимые сульфиды можно получить, действуя сероводородом на растворы солей соответствующих металлов:

CuSO4 + H2S CuS+ H2SO4 .

Оксид серы (IV) образуется при горении серы на воздухе:

S + O2 → SO2 .

В промышленности SO2 получают при обжиге сульфидов и полисульфидов металлов, а также термическим разложением сульфатов (в частности CaSO4):

Диоксид серы – бесцветный газ с запахом жжёной серы. SO2 хорошо растворяется в воде, образуя сернистую кислоту:

Сернистая кислота – слабая двухосновная кислота (К1=1,6×10–2, К2=6×10–8). H2SO3 и её соли являются хорошими восстановителями и окисляются до серной кислоты или сульфатов:

При высокой температуре в присутствии катализатора (V2O5, сплавы на основе платины) диоксид серы окисляется кислородом до триоксида:

Оксид серы (VI) – это ангидрид серной кислоты:

В газообразном состоянии оксид серы (VI) состоит из молекул SO3, построенных в форме правильного треугольника. При конденсации паров SO3 образуется летучая жидкость (t кипения = +44,8 °C), состоящая преимущественно из тримерных циклических молекул. При охлаждении до +16,8 °C она затвердевает, и образуется так называемая льдовидная модификация SO3 . При хранении она постепенно превращается в асбестовидную модификацию SO3, состоящую из полимерных молекул.

Концентрированная серная кислота, особенно горячая, – энергичный окислитель. Она окисляет бромид- и иодид-ионы до свободных галогенов, уголь – до углекислого газа, серу – до SO2. При взаимодействии с металлами концентрированная серная кислота переводит их в сульфаты, восстанавливаясь до SO2, S или H2S. Чем более активен металл, тем более глубоко восстанавливается кислота.

Например, при взаимодействии концентрированной серной кислоты с медью преимущественно выделяется SO2; при взаимодействии с цинком может наблюдаться одновременное выделение и оксида серы (IV), и свободной серы, и сероводорода:

H2SO4 – сильная двухосновная кислота, диссоциированная по первой стадии

практически нацело; диссоциация по второй стадии протекает в меньшей степени, однако в разбавленных водных растворах серная кислота диссоциирована практически нацело по схеме:

H2SO4 → 2 H + + SO4 2-

Большинство солей серной кислоты хорошо растворимо в воде. К практически нерастворимым относятся BaSO4 , SrSO4 , PbSO4; малорастворим CaSO4. Качественная реакция на ионы SO4 2– обусловлена образованием малорастворимых сульфатов. Например, при введении ионов бария в раствор, содержащий сульфатионы, выпадает белый осадок сульфата бария, практически нерастворимый в воде и разбавленных кислотах:

Ba 2+ + SO4 2- → BaSO4↓ .

Серную кислоту применяют в производстве минеральных удобрений;

как электролит в свинцовых аккумуляторах; для получения различных минеральных кислот и солей; в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ; в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности и т.д.

ОВР в статье специально выделены цветом. Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.

Разбавленная серная ведет себя, как и остальные кислоты, окислительные свои возможности прячет:

И еще, что надо помнить про разбавленную серную кислоту : она не реагирует со свинцом . Кусок свинца, брошенный в разбавленную H2SO4 покрывается слоем нерастворимого (см. таблицу растворимости) сульфата свинца и реакция моментально прекращается.

Окислительные свойства серной кислоты

– тяжелая маслянистая жидкость, не летучая, не имеет вкуса и запаха

За счет серы в степени окисления +6(высшей) серная кислота приобретает сильные окислительные свойства.

Правило для задания 24 (по-старому А24) при приготовлении растворов серной кислоты никогда нельзя в нее лить воду . Концентрированую серную кислоту нужно тонкой струйкой вливать в воду, постоянно помешивая.

Взаимодействие концентрированной серной кислоты с металлами

Эти реакции строго стандартизированны и идут по схеме:

H2SO4(конц.) + металл → сульфат металла + H2O + продукт восстановленной серы.

Есть два нюанса:

1) Алюминий, железо и хром с H2SO4 (конц) в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2) С платиной и золотом H2SO4 (конц) не реагирует вообще.

Сера в концентрированной серной кислоте – окислитель

  • значит, сама будет восстанавливаться;
  • то, до какой степени окисления будет восстанавливаться сера, зависит от металла.

Рассмотрим диаграмму степеней окисления серы :

  • До -2 серу могут восстановить только очень активные металлы — в ряду напряжений до алюминия включительно .

Реакции будут идти вот так:

8Li + 5H 2 SO 4( конц .) → 4Li 2 SO 4 + 4H 2 O + H 2 S

4Mg + 5H 2 SO 4( конц .) → 4MgSO 4 + 4H 2 O + H 2 S

8Al + 15H 2 SO 4( конц .) (t)→ 4Al 2 (SO 4 ) 3 + 12H 2 O + 3H 2 S

  • при взаимодействии H2SO4 (конц) с металлами в ряду напряжений после алюминия, но до железа , то есть с металлами со средней активностью сера восстанавливается до 0 :

3Mn + 4H 2 SO 4( конц .) → 3MnSO 4 + 4H 2 O + S↓

2Cr + 4H 2 SO 4( конц .) (t)→ Cr 2 (SO 4 ) 3 + 4H 2 O + S↓

3Zn + 4H 2 SO 4( конц .) → 3ZnSO 4 + 4H 2 O + S↓

  • все остальные металлы, начиная с железа в ряду напряжений (включая те, что после водорода, кроме золота и платины, конечно), могут восстановить серу только до +4. Так как это малоактивные металлы:

2 Fe + 6 H 2 SO 4(конц.) ( t )→ Fe 2 ( SO 4 ) 3 + 6 H 2 O + 3 SO 2

(обратите внимание, что железо окисляется до +3, до максимально возможной, высшей степени окисления, так как оно имеет дело с сильным окислителем)

Cu + 2H 2 SO 4( конц .) → CuSO 4 + 2H 2 O + SO 2

2Ag + 2H 2 SO 4( конц .) → Ag 2 SO 4 + 2H 2 O + SO 2

Конечно, все относительно. Глубина восстановления будет зависеть от многих факторов: концентрации кислоты (90%, 80%, 60%), температуры и т.д. Поэтому совсем уж точно предсказать продукты нельзя. Приведенная выше таблица тоже имеет свой процент приблизительности, но пользоваться ей можно. Еще необходимо помнить, что в ЕГЭ, когда продукт восстановленной серы не указан, и металл не отличается особой активностью, то, скорее всего, составители имеют в виду SO 2 . Нужно смотреть по ситуации и искать зацепки в условиях.

SO 2 – это вообще частый продукт ОВР с участием конц. серной кислоты.

H2SO4 (конц) окисляет некоторые неметаллы (которые проявляют восстановительные свойства), как правило, до максимальной — высшей степени окисления (образуется оксид этого неметалла). Сера при этом тоже восстанавливается до SO 2:

C + 2H 2 SO 4( конц .) → CO 2 + 2H 2 O + 2SO 2

2P + 5H 2 SO 4( конц .) → P 2 O 5 + 5H 2 O + 5SO 2

Свежеобразованный оксид фосфора (V ) реагирует с водой, получается ортофосфорная кислота. Поэтому реакцию записывают сразу:

2P + 5H 2 SO 4( конц ) → 2H 3 PO 4 + 2H 2 O + 5SO 2

То же самое с бором, он превращается в ортоборную кислоту:

2B + 3H 2 SO 4( конц ) → 2H 3 BO 3 + 3SO 2

Очень интересны взаимодействие серы со степенью окисления +6 (в серной кислоте) с «другой» серой (находящейся в другом соединении). В рамках ЕГЭ рассматривается взаимодействиеH2SO4 (конц) с серой (простым веществом) и сероводородом .

Начнем с взаимодействия серы (простого вещества) с концентрированной серной кислотой . В простом веществе степень окисления 0, в кислоте +6. В этой ОВР сера +6 будет окислять серу 0. Посмотрим на диаграмму степеней окисления серы:

Сера 0 будет окисляться, а сера +6 будет восстанавливаться, то есть понижать степень окисления. Будет выделяться сернистый газ:

2 H 2 SO 4(конц.) + S → 3 SO 2 + 2 H 2 O

Но в случае с сероводородом:

Образуется и сера (простое вещество), и сернистый газ:

H 2 SO 4( конц .) + H 2 S → S↓ + SO 2 + 2H 2 O

Этот принцип часто может помочь в определении продукта ОВР, где окислитель и восстановитель – один и тот же элемент, в разных степенях окисления. Окислитель и восстановитель «идут навстречу друг другу» по диаграмме степеней окисления.

H2SO4 (конц) , так или иначе, взаимодействует с галогенидами . Только вот тут надо понимать, что фтор и хлор – «сами с усами» и с фторидами и хлоридами ОВР не протекает , проходит обычный ионно-обменный процесс, в ходе которого образуется газообразный галогеноводород:

CaCl 2 + H 2 SO 4( конц .) → CaSO 4 + 2HCl

CaF 2 + H 2 SO 4( конц .) → CaSO 4 + 2HF

А вот галогены в составе бромидов и иодидов (как и в составе соответствующих галогеноводородов) окисляются ей до свободных галогенов. Только вот сера восстанавливается по-разному: иодид является более cильным восстановителем, чем бромид. Поэтому иодид восстанавливает серу до сероводорода, а бромид до сернистого газа:

2H 2 SO 4( конц .) + 2NaBr → Na 2 SO 4 + 2H 2 O + SO 2 + Br 2

H 2 SO 4( конц .) + 2HBr → 2H 2 O + SO 2 + Br 2

5H 2 SO 4( конц .) + 8NaI → 4Na 2 SO 4 + 4H 2 O + H 2 S + 4I 2

H 2 SO 4( конц .) + 8HI → 4H 2 O + H 2 S + 4I 2

Хлороводород и фтороводород (как и их соли) устойчивы к окисляющему действию H2SO4 (конц).

И наконец, последнее: для концентрированной серной кислоты это уникально, больше никто так не может. Она обладает водоотнимающим свойством .

Это позволяет использовать концентрированную серную кислоту самым разным образом:

Во-первых, осушение веществ. Концентрированная серная кислота забирает воду от вещества и оно «становится сухим».

Во-вторых, катализатор в реакциях, в которых отщепляется вода (например, дегидратация и этерификация):

H 3 C–COOH + HO–CH 3 (H 2 SO 4 (конц.) )→ H 3 C–C(O)–O–CH 3 + H 2 O

H 3 C–CH 2 –OH (H 2 SO 4 (конц.) )→ H 2 C =CH 2 + H 2 O

Альмурзинова Завриш Бисембаевна , учитель биологии и химии МБОУ «Совхозная основная общеобразовательная школа Адамовского района Оренбургской области.

Предмет - химия, класс – 9.

УМК: «Неорганическая химия», авторы: Г.Е. Рудзитис, Ф.Г. Фельдман, Москва, «Просвещение», 2014 год.

Уровень обучения – базовый.

Тема : «Сероводород. Сульфиды. Сернистый газ. Сернистая кислота и её соли». Количество часов по теме – 1.

Урок № 4 в системе уроков по теме « Кислород и сера ».

Цель : На основании знаний о строении сероводорода, оксидов серы рассмотреть их свойства и получение, познакомить учащихся со способами распознавания сульфидов и сульфитов.

Задачи:

1. Образовательная – изучить особенности строения и свойства соединений серы (II ) и( IV ); ознакомиться с качественными реакциями на сульфид и сульфит - ионы.

2. Развивающая – развивать у учащихся умения проводить эксперимент, наблюдать за результатами, анализировать и делать выводы.

3. Воспитательная развитию интереса к изучаемому привить навыкы отношения к природе.

Планируемые результаты : уметь описывать физические и химические свойства сероводорода, сероводородной кислоты и её солей; знать способы получения сернистого газа и сернистой кислоты, объяснить свойства соединений серы (II ) и(IV ) на основе представлений об окислительно-восстановительных процессах; иметь представления о влиянии сернистого газа на появление кислотных дождей.

Оборудование : На демонстрационном столе: сера, сульфид натрия, сульфид железа, раствор лакмуса, раствор серной кислоты, раствор нитрата свинца, хлор в цилиндре, закрытом пробкой, прибор для получения сероводорода и испытания его свойств, оксид серы(VI ), газометр с кислородом, стакан вместимостью 500 мл., ложечка для сжигания веществ.

Ход урока :

    Организационный момент .

    Проводим беседу по повторению свойств серы:

1) чем объясняется наличие нескольких аллотропных видоизменений серы?

2) что происходит с молекулами: А) при охлаждении парообразной серы. Б) при длительном хранении пластической серы, в) при выпадении кристаллов из раствора серы в органических растворителях, например в толуоле?

3) на чем основан флотационный способ очистки серы от примесей, например от речного песка?

Вызываем двух учащихся: 1) изобразите схемы молекул различных аллотропных видоизменений серы и расскажите об их физических свойствах. 2) составьте уравнения реакций, характеризующих свойства кислорода, и рассмотрите их с точки зрения окисления -восстановления.

Остальные учащиеся решают задачу, какова масса сульфида цинка, образующегося при реакции соединения цинка с серой, взятой количеством вещества 2,5 моль?

    Совместно с учащимися формулируем задачу урока : познакомиться со свойствами соединений серы со степенью окисления -2 и +4.

    Новая тема : Учащиеся называют известные им соединения, в которых сера проявляет эти степени окисления. На доске и в тетрадях пишут химические, электронные и структурные формулы сероводорода, оксида серы (IV ), сернистой кислоты.

Как можно получить сероводород? Учащиеся записывают уравнение реакции соединения серы с водородом и объясняют её с точки зрения окисления-восстановления. Затем рассматривают другой способ получения сероводорода: реакцию обмена кислот с сульфидами металлов. Сравниваем этот способ со способами получения галогеноводородов. Отмечаем, что степень окисления серы в реакциях обмена не меняется.

Какими свойствами обладает сероводород? В беседе выясняем физические свойства, отмечаем физиологическое действие. Химические свойства выясняем на опыте горения сероводорода в воздухе при различных условиях. Что может образоваться в качестве продуктов реакции? Рассматриваем реакции с точки зрения окисления-восстановления:

2 Н 2 S + 3O 2 = 2H 2 O + 2SO 2

2H 2 S + O 2 =2H 2 O + 2S

Обращаем внимание учащихся на то, что при полном сгорании происходит более полное окисление (S -2 - 6 e - = S +4 ), чем во втором случае (S -2 - 2 e - = S 0 ).

Обсуждаем, как пройдет процесс, если в качестве окислителя будет взят хлор. Демонстрируем опыт смешивания газов в двух цилиндрах, верхний из которых заранее наполнен хлором, нижний - сероводородом. Хлор обесцвечивается, образуется хлороводород. Сера оседает на стенках цилиндра. После этого рассматриваем сущность реакции разложения сероводорода и подводим учащихся к выводу о кислотном характере сероводорода, подтверждая опытом с лакмусом. Затем проводим качественную реакцию на сульфид ион и составляем уравнение реакции:

Na 2 S +Pb(NO 3 ) 2 =2NaNO 3 +PbS ↓

Совместно с учащимися формулируем вывод: сероводород является только восстановителем в окислительно- восстановительных реакциях, имеет кислотный характер, раствор его в воде кислота.

S 0 →S -2 ; S -2 →S 0 ; S 0 →S +4 ; S -2 →S +4 ; S 0 →H 2 S -2 → S +4 О 2.

Подводим учащихся к выводу о существовании генетической связи между соединениями серы и начинаем разговор о соединениях S +4 . Демонстрируем опыты: 1) получение оксида серы(IV ), 2) обесцвечивание раствора фуксина, 3) растворение оксида серы(IV ) в воде, 4)обнаружение кислоты. Составляем уравнения реакций выполненных опытов и разбираем сущность реакций:

2S О 2 + О 2 =2 S О 3 ; S О 2 +2H 2 S=3S+2H 2 О .

Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы(IV ) и воду, поэтому существует только в водных растворах. Эта кислота средней силы. Она образует два ряда солей: средние - сульфиты(S О 3 -2 ), кислые – гидросульфиты(HS О 3 -1 ).

Демонстрируем опыт: качественное определение сульфитов, взаимодействие сульфитов с сильной кислотой, при этом выделяется газ S О 2 резким запахом:

К 2 S О 3 + Н 2 S О 4 → К 2 S О 4 + Н 2 О + S О 2

    Закрепление. Работа по двум вариантам составить схемы применения 1 вариант сероводорода, второй вариант оксида серы(IV )

    Рефлексия . Подводим итоги работы:

О каких соединениях мы сегодня говорили?

Какие свойства проявляют соединения серы(II ) и ( IV ).

Назовите области применения этих соединений

VII . Домашнее задание: §11,12, упр.3-5 (с.34)