Распространение колебаний в среде волны инфоурок. Распространение колебаний в упругой среде


Тема: Распространение колебаний в среде. Волны.
Физика. 9 класс.
Цель: Познакомить учащихся с волновым движением, рассмотреть его особенности, механизм
распространения волн.
Задачи:
­
обучающие: углубление знаний о видах колебательного движения, использование связи физики
с литературой, историей, математикой; формирование понятий волновое движение,
механической волны, вида волн, распространение их в упругой среде;
развивающие: развитие умений сравнивать, систематизировать, анализировать, делать выводы;
воспитательные: воспитание коммуникативности.
­
­
Дидактический тип урока: Изучение нового материала.
Оборудование: Ноутбук, мультимедийный проектор, видеоролик – волны на пружине, презентация
PowerPoint

К уроку.
Ход урока:
I. Проверка знаний и умений.
1. Ответить на вопросы.
 Внимательно прочитайте словосочетания. Определите, возможны ли свободные колебания:
поплавка на поверхности воды; тела на канале, прорытом сквозь земной шар; птицы на ветке;
шарика на плоской поверхности; шарика в сферической ямке; рук и ног человека; спортсмена на
батуте; иглы в швейной машинке.
 Какой автомобиль, нагруженный или без груза, будет совершать на рессорах более частые
колебания?
 Существует два типа часов. В основе одних – колебания груза на стержне, других – груза на
пружине. Каким образом можно регулировать частоту хода каждых часов?
 При периодических порывах ветра раскачался и рухнул мост Tacoma Narrous в Америке.
Объясните почему?
2. Решение задач.
Учитель предлагает выполнить компетентностно ­ ориентированное задание, структура и содержание
которого представлена ниже.
Стимул: Оценить имеющиеся знания по теме «Механические колебания».
Задачная формулировка: В течение 5 минут, используя приведенный текст, определите частоту и
период сокращения сердца человека. Запишите данные, которые вы не сможете использовать при решении
задач.
Общая длина кровеносных капилляров в организме человека примерно 100 тыс. км, что в 2,5 раза
превышает длину экватора, а общая внутренняя площадь – 2400 м2. Кровеносные капилляры имеют
толщину в 10 раз меньшую, чем волос. В течение минуты сердце выбрасывает в аорту около 4 л
крови, которая затем перемещается во все точки организма. Сердце в среднем сокращается 100 тыс.
раз в сутки. За 70 лет жизни человека сердце сокращается 2 миллиарда 600 миллионов раз и
перекачивает 250 миллионов раз.
Бланк для выполнения задания:
1. Данные необходимые для определения периода и частоты сокращения сердца:
а) ___________; б) _________
Формула для вычисления: ______________
Вычисления _______________
=________; Т=_____________
ν
2. Излишние данные
а) ___________
б) ___________

в) ___________
г) ___________
Модельный ответ:
Данные необходимые для определения периода и частоты сокращения сердца:
а) Число сокращений N=100000; б) Время сокращений t=1 сут.
ν
c­1; T=1/1,16=0,864 c
Формула для вычисления: =ν N/t; T=1/ν
Вычисления =100000/(24*3600)=1,16
=1,16
c­1; Т=0,864 c.
ν
Или а) Число сокращений N=2600000000; б) Время сокращений t=70 лет. – Но эти данные
приводят к более сложным вычислениям, поэтому нерациональны.
Излишние данные
а) Общая длина кровеносных сосудов – 100 тыс. км
б) общая внутренняя площадь – 2400 м2
в) В течение минуты сердце выбрасывает в кровь около 4 л крови.
г) Толщина кровеносных сосудов в 10 раз меньше толщины волоса.
Поле модельных ответов
Выделены данные для определения частоты и периода сокращения сердца.
Приведены формулы для вычисления.
Выполнены вычисления, приведен правильный ответ.
Выделены из текста излишние данные.
Инструмент
оценки
ответа
1
1
1
1
II.
Объяснение нового материала.
Все частицы среды связаны между собой силами взаимного притяжения и отталкивания, т.е.
взаимодействуют друг с другом. Поэтому если хотя бы одну частицу вывести из положения равновесия
(заставить совершать колебания), то она потянет за собой рядом находящуюся частицу(благодаря
взаимодействию между частицами это движение начинает распространяться во все стороны). Таким
образом, колебания будут передаваться от одной частицы к другой. Такое движение называется волновым.
Механической волной (волновым движением) называется распространение колебаний в упругой
среде.
Колебания, распространяющиеся в пространстве со временем, называются волной.
или
В данном определении речь идет о так называемых бегущих волнах.
Основное общее свойство бегущих волн любой природы заключается в том, распространяясь в
пространстве, переносят энергию, но без переноса вещества.
В бегущей волне происходит перенос энергии без переноса вещества.
В данной теме мы будем рассматривать только упругие бегущие волны, частным случаем которых
является звук.
Упругие волны – это механические возмущения, распространяющиеся в упругой среде.
Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил,
вызванных деформацией.

Кроме упругих волн существуют и другие виды волн, например волны на поверхности жидкости,
электромагнитные волны.
Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение
имеет большое значение.
Волновое движение бывает двух видов: поперечное и продольное.
Поперечная волна – частицы колеблются (движутся) перпендикулярно (поперек) скорости
распространения волны.
Примеры: волна от брошенного камня…
Продольная волна – частицы колеблются (движутся) параллельно скорости распространения
волны.
Примеры: звуковые волны, цунами…
Механические волны
Шнур Пружина
поперечные
продольные
Поперечные волны.
Продольные волны.
Возникает упругая деформация сдвига.
Объем тела
не меняется.
Силы упругости стремятся вернуть тело в
исходное положение. Эти силы и вызывают
колебания среды.
Сдвиг слоев друг относительно друга в
жидкости и газе не приводит к появлению
сил упругости, следовательно возникают
только в твердых телах.
Возникают при деформации сжатия.
Силы упругости возникают в твердых
телах, жидкостях и газах. Эти силы
вызывают колебания отдельных участков
среды, поэтому распространяются во всех
средах.
В твердых телах скорость распространения
больше.
III.
Закрепление:
1. Интересные задачи.
а) В 1883г. При печально известном извержении индонезийского вулкана Кракатау воздушные ударные
волны, рожденные подземными взрывами, трижды обошли земной шар.
К какому виду волн можно отнести ударную волну? (К продольным волнам).
б) Цунами – грозный попутчик землетрясений. Родилось такое название в Японии и означает
гигантскую волну. Когда она накатывает на берег, создается впечатление, что это не волна вовсе, а
море, разъяренное, неукротимое, кидается на берег. Ничего нет удивительного в том, что цунами
производят на нем опустошения. Во время землетрясения 1960 г. На побережье Чили бросались

волны высотой до шести метров. Море отступало и наступало несколько раз в течение второй
половины дня.
К какому виду волн относятся цунами? Чему равна амплитуда цунами 1960 года, обрушившаяся на
Чили?(Цунами относятся к
волны равна 3 м).
(иллюстрация цунами:
продольным волнам. Амплитуда
http://ru.wikipedia.org/wiki/Изображение:2004_Indian_Ocean_earthquake_Maldives_tsunami_wave.jpg
в) Рифели – это знаки мелкой волновой ряби. Они существуют на земле со времен появления сыпучих
сред – снега и песка. Их отпечатки встречаются в древних геологических пластах (иногда вместе со
следами динозавров). Первые научные наблюдения над рифелями были сделаны Леонардо да Винчи. В
пустынях расстояние между соседними гребнями волновой ряби измеряется от 1­12 см (чаще 3­8см)
при глубине впадин между гребнями в среднем 0,3­1 см.
Предположив, что рифели – это волна, определите амплитуду волны (0,15­0,5 см).
Иллюстрация рифели:
http://rusnauka.narod.ru/lib/phisic/destroy/gl7/image246.gif
2. Физический опыт. Индивидуальная работа.
Учитель предлагает учащимся выполнить компетентностно – ориентированное задание, структура и
содержание которого представлена ниже
Стимул: оценить приобретенные знания по теме «Волновое движение».
Задачная формулировка: используя выданные приборы и знания, полученные на уроке,
определить:
­ какие волны образуются на поверхности волны;
­ какую форму имеет фронт волны от точечного источника;
­ перемещаются ли частицы волны в направлении распространения волны?
­ сделайте вывод об особенности волнового движения.

Оборудование: стакан от калориметра, пипетка или бюретка, стеклянная трубка, спичка.
Волны, образующиеся на поверхности воды, являются __________
Волны на поверхности воды имеют форму _________
Спичка, помещенная на поверхность воды при распространении волны, ___________
Бланк для выполнения задания
Особенность волнового движения _________________
Поле модельных ответов
Инструмент оценки
ответа
Волны, образующиеся на поверхности воды, являются поперечными.
Волны на поверхности воды имеют форму окружности.
Спичка, помещенная на поверхность воды при распространении волны, не
перемещается.
Особенность волнового движения – при волновом движении не происходит
смещения вещества вдоль направления распространения волны.
Всего
III.
Домашнее задание: §31, 32
1
1
1
2
5
http://school­collection.edu.ru/catalog/rubr/8f5d7210­86a6­11da­a72b­0800200c9a66/21674/

Начнем с определения упругой среды. Как можно заключить из названия упругая среда это такая среда в которой действуют силы упругости. Применительно к нашим целям, добавим, что при любом возмущении этой среды (не эмоциональной бурной реакции, а отклонении параметров среды в каком то месте от равновесных) в ней возникают силы, стремящиеся вернуть нашу среду в первоначальное равновесное состояние. При этом мы будем рассматривать протяженные среды. Насколько протяженные это мы уточним в дальнейшем, а пока будем считать, что этого достаточно. Например представим себе длинную пружину, закрепленную с обоих концов. Если в некотором месте пружины сжать несколько витков, то сжатые витки будут стремиться расжаться, а соседние витки, которые оказались растянутыми, будут стремиться сжаться. Таким образом наша упругая среда – пружина будет стараться придти в первоначальное спокойное (невозмущенное) состояние.

Газы, жидкости, твердые тела представляют собой упругие среды. Важным в предыдущем примере является то обстоятельство, что сжатый участок пружины действует на соседние участки, или по ученому говоря, передает возмущение. Похожим образом и в газе, создавая в каком то месте например область пониженного давления, соседние области, стремясь выровнять давление, будут передавать возмущение уже своим соседям, те в свою очередь своим и так далее.

Пара слов о физических величинах. В термодинамике как правило состояние тела определяется общими для всего тела параметрами, давлением газа, его температурой и плотностью. Теперь же нас будет интересовать локальное распределение этих величин.

Если колеблющееся тело (струна, мембрана и т. д.) находится в упругой среде (газ как мы уже знаем это упругая среда), то оно приводит в колебательное движение соприкасающиеся с ним частицы среды. Вследствие этого в прилегающих к телу элементах среды возникают периодические деформации (например, сжатия и разряжения). При этих деформациях в среде появляются упругие силы, стремящиеся вернуть элементы среды к первоначальным состояниям равновесия; благодаря взаимодействию соседних элементов среды упругие деформации будут передаваться от одних участков среды к другим, более удаленным от колеблющегося тела.

Таким образом, периодические деформации, вызванные в каком-нибудь месте упругой среды, будут распространяться в среде с некоторой скоростью, зависящей от ее физических свойств. При этом частицы среды совершают колебательные движения около положений равновесия; от одних участков среды к другим передается только состояние деформации.

Когда рыба «клюет» (дергает за крючок), то от поплавка по поверхности воды разбегаются круги. Вместе с поплавком смещаются соприкасающиеся с ним частицы воды, которые вовлекают в движение ближайшие к ним другие частицы и так далее.

Такое же явление происходит с частицами натянутого резинового шнура, если один его конец привести в колебание (рис. 1.1).

Распространение колебаний в среде называют волновым движением Рассмотрим подробнее, как возникает волна на шнуре. Если зафиксировать положения шнура через каждые 1/4 Т (Т - это период, с которым на рис.1.1 колеблется рука) после начала колебаний его первой точки, то получится картина, показанная на рис. 1.2, б-д. Положение а соответствует началу колебаний первой точки шнура. Десять его точек помечены цифрами, а пунктирные прямые показывают, где находятся одни и те же точки шнура в разные моменты времени.

Через 1/4 Т после начала колебания точка 1 занимает крайнее верхнее положение, а точка 2 только начинает свое движение. Поскольку каждая последующая точка шнура начинает свое движение позже предыдущей, то в промежутке 1-2 точки располагаются, как показано на рис. 1.2, б. Еще через 1/4 Т точка 1 займет положение равновесия и будет двигаться вниз, а верхнее положение займет точка 2 (положение в). Точка 3 в этот момент только начинает свое движение.

За целый период колебания распространяются до точки 5 шнура (положение д). По окончании периода Т точка 1, двигаясь вверх, начнет свое второе колебание. Одновременно с ней начнет двигаться вверх и точка 5, совершая свое первое колебание. В дальнейшем эти точки будут иметь одинаковые фазы колебаний. Совокупность точек шнура в интервале 1-5 образует волну. Когда точка 1 закончит второе колебание, на шнуре вовлекутся в движение еще точки 5-10, т. е. образуется вторая волна.

Если проследить за положением точек, имеющих одинаковую фазу, то будет видно, что фаза как бы переходит от точки к точке и движется вправо. Действительно, если в положении б фазу 1/4 имеет точка 1, то в положении в эту же фазу имеет точка 2 и т. д.

Волны, в которых происходит перемещение фазы с определенной скоростью, называют бегущими. При наблюдении за волнами видно именно распространение фазы, например движение гребня волны. Отметим, что все точки среды в волне колеблются около своего положения равновесия и вместе с фазой не перемещаются.

Процесс распространения колебательного движения в среде называется волновым процессом или просто волной .

В зависимости от характера возникающих при этом упругих деформаций различают волны продольные и поперечные . В продольных волнах частицы среды колеблются вдоль линии, совпадающей с направлением распространения колебаний. В поперечных волнах частицы среды колеблются перпендикулярно к направлению распространения волны. На рис. 1.3 показано расположение частиц среды (условно изображенных в виде черточек) в продольных (а) и поперечных (б) волнах.

Жидкие и газообразные среды не имеют упругости сдвига и поэтому в них возбуждаются только продольные волны, распространяющиеся в виде чередующихся сжатий и разрежений среды. Волны, возбуждаемые на поверхности поды, являются поперечными: они обязаны своим существованием земному тяготению. В твердых телах могут быть вызваны и продольные и поперечные волны; частным видом поперечных воли являются крутильные, возбуждаемые в упругих стержнях, к которым приложены крутильные колебания.

Предположим, что точечный источник волны начал возбуждать в среде колебания в момент времени t = 0; по истечении времени t это колебание распространится по различным направлениям на расстоянии r i =c i t , где с i - скорость волны в данном направлении.

Поверхность, до которой доходит колебание в некоторый момент времени, называется фронтом волны.

Понятно, что фронт волны (волновой фронт) перемещается со временем в пространстве.

Форма фронта волны определяется конфигурацией источника колебаний и свойствами среды. В однородных средах скорость распространения волны везде одинакова. Среда называется изотропной , если эта скорость одинакова по всем направлениям. Фронт волны от точечного источника колебаний в однородном и изотропной среде имеет вид сферы; такие волны называются сферическими .

В неоднородной и не изотропной (анизотропной ) среде, а также от неточечных источников колебаний фронт волны имеет сложную форму. Если фронт волны представляет собой плоскость и эта форма сохраняется по мере распространения колебаний в среде, то волну называют плоской . Малые участки фронта волны сложной формы можно считать плоской волной (если только рассматривать небольшие расстояния, проходимые этой волной).

При описании волновых процессов выделяют поверхности, в которых все частицы колеблются в одинаковой фазе; эти «поверхности одинаковой фазы» называются волновыми, или фазовыми.

Ясно, что фронт волны представляет собой переднюю волновую поверхность, т.е. наиболее удаленную от источника, создающего волны, и волновые поверхности также могут быть сферическими, плоскими или иметь сложную форму в зависимости от конфигурации источника колебаний и свойств среды. На рис. 1.4 условно показаны: I - сферическая волна от точечного источника, II – волна от колеблющейся пластинки, III - эллиптическая волна от точечного источника в анизотропной среде, в которой скорость распространения волны с плавно изменяется по мере возрастания угла α, достигая максимума вдоль направления АА и минимума вдоль ВВ.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

ОК-9 Распространение колебаний в упругой среде

Волновое движение - механические волны, т. е. волны, которые распространяются только в веществе (морские, звуковые, волны в струне, волны землетрясений). Источниками волн являются колебания вибратора.

Вибратор - колеблющееся тело. Создает колебания в упругой среде.

Волной называются колебания, распространяющиеся в пространстве с течением времени.

Волновая поверхность - геометрическое место точек среды, колеблющихся в одинаковых фазах

Л
уч
- линия, касательная к которой в каждой точке совпадает с направлением распространения волны.

Причина возникновения волн в упругой среде

Если вибратор колеблется в упругой среде, то он воздействует на частицы среды, заставляя их совершать вынужденные колебания. За счет сил взаимодействия между частицами среды колебания передаются от одной частицы к другой.

Т
ипы волн

Поперечные волны

Волны, в которых колебания частиц среды происходят в плоскости, перпендикулярной направлению распространения волны. Возникают в твердых телах и на поверхности поды.

П
родольные волны

Колебания происходят вдоль распространения волны. Могут возникать в газах, жидкостях и твердых телах.

Поверхностные волны

В
олны, которые распространяются на границе раздела двух сред. Волны на границе между водой и воздухом. Еслиλ меньше глубины водоема, то каждая частица воды на поверхности и вблизи от нее движется по эллипсу, т.е. представляет собой комбинацию колебаний в продольном и поперечном направлениях. У дна же наблюдается чисто продольное движение.

Плоские волны

Волны, у которых волновые поверхности являются плоскостями, перпендикулярными на правлению распространения волн.

Сферические волны

Волны, у которых волновые поверхности являются сферами. Сферы волновых поверхностей концентрические.

Характеристики волнового движения


Длина волны

Наименьшее расстояние между двумя гонками, колеблющимися в одной фазе, называется длиной волны. Зависит только от среды, в которой распространяется волна, при равных частотах вибратора.

Частота

Частота ν волнового движения зависит только от частоты вибратора.

Скорость распространения волны

Скорость v=λν . Так как
, то
. Однако скорость распространения волны зависит от вида вещества и его состояния; отν иλ , не зависит.

В идеальном газе
, гдеR - газовая постоянная;М - молярная масса;Т - абсолютная температура;γ - постоянная для данного газа;ρ - плотность вещества.

В твердых телах поперечные волны
, гдеN - модуль сдвига; продольные волны
, гдеQ - модуль всестороннего сжатия. В твердых стержнях
гдеЕ - модуль Юнга.

В твердых телах распространяются как поперечные, так и продольные волны с разными скоростями. На этом основан способ определения эпицентра землетрясения.

Уравнение плоской волны

Его вид x =x 0 sinωt (t l /v) =x 0 sin(ωt kl ), гдеk = 2π /λ - волновое число;l - расстояние, пройденное волной от вибратора до рассматриваемой точкиА .

Запаздывание по времени колебаний точек среды:
.

Запаздывание по фазе колебаний точек среды:
.

Разность фаз двух колеблющихся точек: ∆φ =φ 2 −φ 1 = 2π (l 2 −l 1)/λ .

Энергия волны

Волны переносят энергию от одной колеблющейся частицы к другой. Частицы совершают только колебательные движения, но не движутся вместе с волной: E =E к +E п,

где E к - кинетическая энергия колеблющейся частицы;E п - потенциальная энергия упругой деформации среды.

В некотором объеме V упругой среды, в которой распространяется волна с амплитудойх 0 и циклической частотойω , имеется средняя энергияW , равная
, гдеm - масса выделенного объема среды.

Интенсивность волны

Физическая величина, которая равна энергии, переносимой волной за единицу времени через единицу площади поверхности перпендикулярно направлению распространения волны, называется интенсивностью волны:
. Известно, чтоW иj ~.

Мощность волны

Если S - поперечная площадь поверхности, через которую волной переносится энергия, аj - интенсивность волны, то мощность волны равна:p =jS .

ОК-10 Звуковые волны

Упругие волны, вызывающие у человека ощущение звука, называются звуковыми волнами.

16 –2∙10 4 Гц - слышимые звуки;

меньше 16 Гц - инфразвуки;

больше 2∙10 4 Гц - ультразвуки.

О
бязательное условие для возникновения звуковой волны - наличие упругой среды.

М
еханизм возникновения звуковой волны аналогичен возникновению механической волны в упругой среде. Совершая колебания в упругой среде, вибратор воздействует на частицы среды.

Звук создают долговременные периодические источники звука. Например, музыкальный: струна, камертон, свист, пение.

Шум создают долговременные, но не периодические источники звука: дождь, море, толпа.

Скорость звука

Зависит от среды и ее состояния, как и для любой механической волны:

.

При t = 0°Сv воды = 1430 м/с,v стали = 5000 м/с,v воздуха = 331 м/с.

Приемники звуковых волн

1. Искусственные: микрофон преобразует механические звуковые колебания в электрические. Характеризуются чувствительностью σ :
,σ зависит отν з.в. .

2. Естественные: ухо.

Его чувствительность воспринимает звук при ∆p = 10 −6 Па.

Чем меньше частота ν звуковой волны, тем меньше чувствительностьσ уха. Еслиν з.в. уменьшается от 1000 до 100 Гц, тоσ уха уменьшается в 1000 раз.

Исключительная избирательность: дирижер улавливает звуки отдельных инструментов.

Физические характеристики звука

Объективные

1. Звуковое давление - давление, оказываемое звуковой волной на стоящее перед ней препятствие.

2. Спектр звука - разложение сложной звуковой волны на составляющие ее частоты.

3. Интенсивность звуковой волны:
, гдеS - площадь поверхности;W - энергия звуковой волны;t - время;
.

Субъективные

Громкость, как и высота, звука связана с ощущением, возникающим в сознании человека, а также с интенсивностью волны.

Человеческое ухо способно воспринимать звуки интенсивностью от 10 −12 (порог слышимости) до 1(порог болевого ощущения).

Г

ромкость не является прямо пропорциональной величиной интенсивности. Чтобы получить звук в 2 раза большей громкости, надо интенсивность увеличить в 10 раз. Волна, имеющая интенсивность 10 −2 Вт/м 2 , звучит в 4 раза громче, чем волна интенсивностью 10 −4 Вт/м 2 . Из-за этого соотношения между объективным ощущением громкости и интенсивностью звука используют логарифмическую шкалу.

Единицей этой шкалы является бел (Б) или децибел (дБ), (1 дБ = 0,1 Б), названная в честь физика Генриха Бела. Уровень громкости выражается в белах:
, гдеI 0 = 10 −12 порог слышимости (усредненный).

Е
слиI = 10 −2 , то
.

Громкие звуки вредны для нашего организма. Санитарная норма равна 30–40 дБ. Это громкость спокойной тихой беседы.

Шумовая болезнь: высокое артериальное давление крови, нервная возбудимость, тугоухость, быстрая утомляемость, плохой сон.

Интенсивность и громкость звука от различных источников: реактивный самолет - 140 дБ, 100 Вт/м 2 ; рок-музыка в закрытом помещении - 120 дБ, 1 Вт/м 2 ; обычный разговор (50 см от него) - 65 дБ, 3,2∙10 −6 Вт/м 2 .

Высота звука зависит от частоты колебаний: чем >ν , тем выше звук.

Т
ембр звука
позволяет различать два звука одинаковой высоты и громкости, издаваемых различными инструментами. Он зависит от спектрального состава.

Ультразвук

Применяется: эхолот для определения глубины моря, приготовление эмульсий (вода, масло), отмывка деталей, дубление кожи, обнаружение дефектов в металлических изделиях, в медицине и др.

Распространяется на значительные расстояния в твердых телах и жидкостях. Переносит энергию значительно большую, чем звуковая волна.

Рассмотрим опыт, показанный на рисунке 69. Длинную пружину подвешивают на нитях. Ударяют рукой по её левому концу (рис. 69, а). От удара несколько витков пружины сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. Как маятник проходит в своём движении положение равновесия, так и витки, минуя положение равновесия, будут продолжать расходиться. В результате в этом же месте пружины образуется уже некоторое разрежение (рис. 69, б). При ритмичном воздействии витки на конце пружины будут периодически то сближаться, то отходить друг от друга, совершая колебания возле своего положения равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, как показано на рисунке 69, е.

Рис. 69. Возникновение волны в пружине

Другими словами, вдоль пружины от её левого конца к правому распространяется возмущение, т. е. изменение некоторых физических величин, характеризующих состояние среды. В данном случае это возмущение представляет собой изменение с течением времени силы упругости в пружине, ускорения и скорости движения колеблющихся витков, их смещения от положения равновесия.

  • Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называются волнами

В данном определении речь идёт о так называемых бегущих волнах. Основное свойство бегущих волн любой природы заключается в том, что они, распространяясь в пространстве, переносят энергию.

Так, например, колеблющиеся витки пружины обладают энергией. Взаимодействуя с соседними витками, они передают им часть своей энергии и вдоль пружины распространяется механическое возмущение (деформация), т. е. образуется бегущая волна.

Но при этом каждый виток пружины колеблется около своего положения равновесия, и вся пружина остаётся на первоначальном месте.

Таким образом, в бегущей волне происходит перенос энергии без переноса вещества .

В данной теме будем рассматривать только упругие бегущие волны, частным случаем которых является звук.

  • Упругие волны - это механические возмущения, распространяющиеся в упругой среде

Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил, вызванных деформацией. Например, если по какому-нибудь металлическому телу ударить молотком, то в нём возникнет упругая волна.

Помимо упругих существуют и другие виды волн, например электромагнитные волны (см. § 44). Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение имеет большое значение.

При возникновении волн в пружине колебания её витков происходили вдоль направления распространения волны в ней (см. рис. 69).

  • Волны, в которых колебания происходят вдоль направления их распространения, называются продольными волнами

Кроме продольных волн существуют и поперечные волны. Рассмотрим такой опыт. На рисунке 70, а показан длинный резиновый шнур, один конец которого закреплён. Другой конец приводят в колебательное движение в вертикальной плоскости (перпендикулярно горизонтально расположенному шнуру). Благодаря силам упругости, возникающим в шнуре, колебания будут распространяться вдоль шнура. В нём возникают волны (рис. 70, б), причём колебания частиц шнура происходят перпендикулярно направлению распространения волн.

Рис. 70. Возникновение волн в шнуре

  • Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными волнами

Движение частиц среды, в которой образуются как поперечные, так и продольные волны, можно наглядно продемонстрировать с помощью волновой машины (рис. 71). На рисунке 71, а показана поперечная волна, а на рисунке 71, б - продольная. Обе волны распространяются в горизонтальном направлении.

Рис. 71. Поперечная (а) и продольная (б) волны

На волновой машине представлен только один ряд шариков. Но, наблюдая за их движением, можно понять, как распространяются волны в сплошных средах, протяжённых во всех трёх направлениях (например, в некотором объёме твёрдого, жидкого или газообразного вещества).

Для этого представьте себе, что каждый шарик является частью вертикального слоя вещества, расположенного перпендикулярно к плоскости рисунка. Из рисунка 71, а видно, что при распространении поперечной волны эти слои, подобно шарикам, будут сдвигаться друг относительно друга, совершая колебания в вертикальном направлении. Поэтому поперечные механические волны являются волнами сдвига.

А продольные волны, как видно из рисунка 71, б, - это волны сжатия и разрежения. В этом случае деформация слоев среды состоит в изменении их плотности, так что продольные волны представляют собой чередующиеся уплотнения и разрежения.

Известно, что упругие силы при сдвиге слоев возникают только в твёрдых телах. В жидкостях и газах смежные слои свободно скользят друг по другу без появления противодействующих упругих сил. Раз нет упругих сил, то и образование упругих волн в жидкостях и газах невозможно. Поэтому поперечные волны могут распространяться только в твёрдых телах.

При сжатии и разрежении (т. е. при изменении объёма участков тела) упругие силы возникают как в твёрдых телах, так и в жидкостях и газах. Поэтому продольные волны могут распространяться в любой среде - твёрдой, жидкой и газообразной.

Вопросы

  1. Что называется волнами?
  2. В чём заключается основное свойство бегущих волн любой природы? Происходит ли в бегущей волне перенос вещества?
  3. Что такое упругие волны?
  4. Приведите пример волн, не относящихся к упругим.
  5. Какие волны называются продольными; поперечными? Приведите примеры.
  6. Какие волны - поперечные или продольные - являются волнами сдвига; волнами сжатия и разрежения?
  7. Почему поперечные волны не распространяются в жидких и газообразных средах?