Переднее оперение. Вертикальное оперение, горизонтальное оперение


0

Конструкция основных частей оперения - стабилизатора и киля - обычно подобна. Одинаковы по конструкции также рули высоты и рули направления. На крупных самолетах стабилизаторы выполняются, как правило, разъемными. Киль может быть изготовлен за одно целое с фюзеляжем или в виде отдельной части. Каркас оперения современных самолетов, как правило, выполняется металлическим. Обшивка киля и стабилизатора обычно жесткая (дюралюминиевая). Рули самолетов малых дозвуковых скоростей обшиваются полотном, что уменьшает их вес и упрощает конструкцию. На самолетах больших скоростей обшивка рулей так же, как и каркас, металлическая.

Киль и стабилизатор. На небольших самолетах киль и стабилизатор делают чаще всего двухлонжеронными. На тяжелых самолетах киль и стабилизатор обычно моноблочной конструкции с работающей обшивкой (рис. 59).

Основные элементы силового набора (лонжероны, стенки, стрингеры, нервюры) конструктивно выполняются так же, как у крыла, и выполняют те же функции, т. е. изгиб воспринимается поясами лонжеронов, стрингерами и частично обшивкой; поперечная сила воспринимается стенками лонжеронов; кручение - замкнутым контуром; обшивка - стенки лонжеронов. Стабилизатор и киль крепятся к фюзеляжу при помощи узлов на лонжеронах и шпангоутах. Для крепления (подвески) рулей стабилизатор и киль имеют специальные кронштейны с универсальными и одноосевыми шарнирами. На рис. 60 показан типовой узел подвески руля.

Рули и элероны (рули крена).

Рули и элероны, как правило, выполняются однолонжеронными с набором стрингеров и нервюр.

Для увеличения жесткости передней части руля иногда устанавливается стенка (вспомогательный лонжерон).

В современном самолетостроении используют три характерных типа рулей для самолетов с различной скоростью полета: руль с трубчатым лонжероном, руль с жестким носком и руль с жесткой обшивкой для самолетов больших скоростей. В руле любого типа набор нервюр собирает воздушную нагрузку с поверхности руля и передает ее на лонжерон и контур кручения, а также на жесткую заднюю кромку.

В первой схеме нервюры руля всю собранную ими нагрузку передают только на лонжерон, а поскольку он трубчатый, то может успешно работать и на изгиб, и на кручение.

Во второй схеме силы с нервюр передаются на стенку балочного лонжерона, загружая его поперечным изгибом, а момент с нервюр передается на контур, образованный стенкой лонжерона с жестким носком. Этот контур и работает на кручение. В этой схеме функции распределяются следующим образом: поперечный изгиб воспринимается балочным лонжероном, а кручение - контуром силового носка.

В третьей схеме (рис. 61) подобное же распределение функций, но крутящий момент передается здесь на весь контур обшивки, а не только на носок.

В соответствии с той или иной схемой передачи сил осуществлены силовые связи элементов руля между собой. Для рулей первой схемы нервюры связаны только с лонжероном заклепками по его окружности.

Рули второй и третьей схем имеют связь нервюр со стенками лонжеронов и контуром кручения. Эта связь обеспечивается заклепками, болтами и иногда клеем.

В целях лучшего использования обшивки для восприятия изгибающего момента и сохранения формы профиля применяют рули с пенопластовым или сотовым заполнителем. Они обладают высокой жесткостью при малом весе.


Триммеры (рис. 62) представляют собой вспомогательную рулевую поверхность, устанавливаемую на задней части основного руля. С помощью триммеров обеспечивается балансировка самолета относительно всех его осей при изменении центровки и режима полета. Отклонение триммера производится независимо от отклонения руля обычно при помощи специальных необратимых самотормозящихся электромеханизмов, включаемых в нужный момент пилотом двусторонним нажимным переключателем. Триммер руля высоты, как правило, управляется при помощи тросового механического устройства. Сущность работы триммера можно пояснить следующим примером. При отказе одного из двигателей самолета появляется разворачивающий момент, противодействие которому может быть создано отклонением руля поворота. Длительный полет самолета с отклоненным рулем утомителен для пилота. Отклоняя триммер в сторону, противоположную отклонению руля, нагрузку, передающуюся на ноги пилота, можно уменьшить до сколько угодно малой величины. Компенсирующий момент от триммера, противодействующий шарнирному моменту, возникает вследствие большого плеча силы, приложенной к триммеру, хотя сама сила и невелика. Величину шарнирного момента при этом можно записать в следующем виде.

Конструкции,

  • возможно меньшее затенение оперения другими частями самолета - крылом, фюзеляжем , гондолами двигателей, а также одной части оперения другой.
  • отсутствие вибраций и колебаний типа флаттера и бафтинга .
  • более позднее, чем на крыле, развитие волнового кризиса .
  • Горизонтальное оперение (ГО)

    Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности - стабилизатора и шарнирно подвешенного к нему руля высоты. У самолетов с хвостовым расположением горизонтальное оперение устанавливается в хвостовой части самолета - на фюзеляже или на верху киля (T-образноя схема).

    Рули и элероны

    Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью применимо и к элеронам. Основным силовым элементом руля (и элерона, естественно), работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

    Основная нагрузка рулей - воздушная аэродинамическая, возникающая при балансировке, маневрировании самолета или при полете в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

    Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

    Аэродинамическая компенсация рулей

    В полете при отклонении рулевых поверхностей возникают шарнирные моменты, которые уравновешиваются усилиями летчика на командных рычагах управления. Эти усилия зависят от размеров и угла отклонения руля, а также от скоростного напора. На современных самолетах усилия управления получаются слишком большими, поэтому приходится в конструкции рулей предусматривать специальные средства для уменьшения шарнирных моментов и уравновешивающих их усилий управления. С этой целью используется аэродинамическая компенсация рулей, суть которой заключается в том, что часть аэродинамических сил руля создают момент относительно оси вращения, противоположный основному шарнирному моменту.

    Наибольшее распространение получили следующие виды аэродинамической компенсации:

    • роговая - на конце руля часть его площади в виде «рога» располагается спереди от оси шарниров, что обеспечивает создание момента обратного знака по отношению к основному шарнирному;
    • осевая - часть площади руля по всему размаху располагается спереди от оси шарниров (ось шарниров смещается назад), что уменьшает шарнирный момент;
    • внутренняя - обычно используется на элеронах и представляет собой пластины, прикрепленные к носку элерона спереди, которые связаны гибкой перегородкой со стенками камеры внутри крыла. При отклонении элерона в камере создается разница давлений над и под пластинами, которая уменьшает шарнирный момент.
    • сервокомпенсация - в хвостовой части руля шарнирно подвешивается небольшая поверхность, которая тягой связывается с неподвижной точкой на крыле или оперении. Эта тяга обеспечивает автоматическое отклонение сервокомпенсатора в сторону, противоположную отклонению руля. Аэродинамические силы на сервокомпенсаторе уменьшают шарнирный момент руля.

    Углы отклонения и эффективность работы такого компенсатора пропорциональны углам отклонения руля, что не всегда оправдывает себя, т.к. усилия управления зависят не только от углов отклонения руля, но и от скоростного напора. Более совершенным является пружинный сервокомпенсатор, у которого за счет включения в кинематику управления пружины с предварительной затяжкой углы отклонения пропорциональны усилиям управления руля, что наилучшим образом отвечает назначению сервокомпенсатора - уменьшать эти усилия.

    Средства аэродинамической балансировки самолета

    Любой установившийся режим полета самолета, как правило, выполняется с отклоненными рулями, что обеспечивает уравновешивание - балансировку - самолета относительно его центра масс. Возникающие при этом усилия на органах управления в кабине принято называть балансировочными. Чтобы зря не утомлять летчика и избавить его от этих ненужных усилий на каждой рулевой поверхности устанавливается триммер , позволяющий полностью снимать балансировочные усилия.

    Триммер конструктивно полностью идентичен сервокомпенсатору и также шарнирно подвешивается в хвостовой части руля, но, в отличие от сервокомпенсатора, имеет дополнительное ручное или электромеханическое управление. Летчик, отклоняя триммер в сторону противоположную отклонению руля, добивается уравновешивания руля на заданном угле отклонения при нулевых усилиях на командном рычаге. В некоторых случаях используется комбинированная поверхность триммер-сервокомпенсатор, который при включении привода работает в качестве триммера, а при отключенном - выполняет функции сервокомпенсатора.

    Следует добавить, что триммер может использоваться лишь в таких системах управления, в которых усилия на командных рычагах напрямую связаны с шарнирным моментом руля - системы механического безбустерного управления или системы с обратимыми бустерами. В системах с необратимыми бустерами - гидроусилителями - естественные усилия на огранах управления очень малы, и для имитации лётчику «механического управления» дополнительно создаются пружинными загрузочными механизмами и от шарнирного момента руля не зависят. В таком случае триммеры на рулях не ставятся, а балансировочные усилия снимаются специальными устройствами - механизмами эффекта триммирования, установленными в проводке управления.

    Другим средством балансировки самолета в установившемся режиме полета может служить переставной стабилизатор. Обычно такой стабилизатор крепится шарнирно на задних узлах подвески, а передние узлы соединяются с силовым приводом, который, перемещая носовую часть стабилизатора вверх или вниз, изменяет углы его установки в полете. Подбирая нужный угол установки, летчик может уравновесить самолет при нулевом шарнирном моменте на руле высоты. Этот же стабилизатор обеспечивает и требуемую эффективность продольного управления самолета на взлете и посадке.

    Средства устранения флаттера рулей и элеронов

    Причиной возникновения изгибно-элеронного и изгибно-рулевого флаттера является их массовая несбалансированность относительно оси шарниров . Обычно центр масс рулевых поверхностей расположен позади оси вращения. В результате при изгибных колебаниях несущих поверхностей силы инерции, приложенные в центре масс рулей, за счет деформаций и

    Хвостовое оперение – аэродинамические профили, расположенные в хвостовой части самолета. Выглядят они как довольно малые «крылышки», каковые традиционно устанавливаются в горизонтальной и вертикальной плоскостях и имеют наименование «стабилизаторы».

    Как раз по этому параметру хвостовое оперение и подразделяется, в первую очередь – на горизонтальное и вертикальное, соответственно с плоскостями, в которых устанавливается. Хорошая схема – один вертикальный и два горизонтальных стабилизатора, каковые конкретно соединены с хвостовой частью фюзеляжа. Как раз такая схема самый обширно применяемая на гражданских самолётах.

    Но существуют и другие схемы – к примеру, Т-образное, которое используется на Ту-154.

    В аналогичной схеме горизонтальное оперение прикреплено к верхней части вертикального, и в случае если наблюдать спереди либо позади самолета, оно напоминает букву «Т», от чего и стало называться. Кроме этого существует схема с двумя вертикальными стабилизаторами, каковые вынесены на законцовки горизонтального оперения, пример самолета с таким типом оперения – Ан-225. Кроме этого два вертикальных стабилизатора имеет большая часть современных истребителей, но установлены они на фюзеляже, потому, что те имеют форму фюзеляжа пара более «приплюснутую» по горизонтали, если сравнивать с гражданскими и грузовыми воздушными судами.

    Ну и в целом, существуют десятки разных конфигураций хвостового оперений и любая имеет недостатки и свои достоинства, о которых обращение отправится немного ниже. Кроме того устанавливается оно не всегда в хвостовой части самолета, но это относится только горизонтальных стабилизаторов.

    Хвостовое оперение самолета Ту-154

    Хвостовое оперение самолета Ан-225

    Принцип работы хвостового оперения. Главные функции.

    А сейчас о функциях хвостового оперения, для чего же оно нужно? Потому, что оно еще именуется стабилизаторами, то возможно высказать предположение, что они что-то стабилизируют. Правильно, это так.

    Хвостовое оперение нужно для балансировки и стабилизации самолета в воздухе, и вдобавок для управления самолетом по двум осям – рысканье (влево-вправо) и тангаж (вверх-вниз).

    Вертикальное хвостовое оперение.

    Функции вертикального оперения – стабилизация самолета. Не считая двух перечисленных выше осей, еще существует третья – крен (вращение около продольной оси самолета), так вот, при отсутствии вертикального стабилизатора, крен приводит к раскачиванию самолета довольно вертикальной оси, притом раскачивание весьма важное и полностью неконтролируемое. Вторая функция – управление по оси рысканья.

    К задней кромке вертикального стабилизатора прикреплен отклоняемый профиль, что управляется из кабины пилотов. Это две главные функции вертикального хвостового оперения, полностью не имеет значение количество, форма и позиция вертикальных стабилизаторов – эти две функции они делают неизменно.

    Виды вертикальных хвостовых оперений.

    Горизонтальное хвостовое оперение.

    Сейчас о горизонтальном хвостовом оперении. Оно кроме этого имеет две главные функции, первую возможно охарактеризовать как балансировочную. Для того чтобы выяснить что тут к чему, возможно совершить несложный опыт.

    Нужно забрать какой-либо долгий предмет, к примеру линейку и положить ее на один вытянутый палец так, дабы она не падала и не клонилась ни назад, ни вперед, т.е. отыскать ее центр тяжести. Итак, сейчас у линейки (фюзеляжа) имеется крыло (палец), уравновесить ее наподобие не сложно. Ну а сейчас нужно представить, что в линейку закачиваются тонны горючего, садятся много пассажиров, загружается огромное количество груза.

    Конечно, все это загрузить идеально относительно центра тяжести легко нереально, но имеется выход. Нужно прибегнуть к помощи пальца второй руки и поместить его сверху от условно задней части линейки, по окончании чего переместить «передний» палец к заднему. В итоге оказалась довольно устойчивая конструкция.

    Возможно еще сделать По другому: поместить «задний» палец под линейку и переместить «передний» вперед, в сторону носовой части. Оба этих примера показывают принцип действия горизонтального хвостового оперения.

    Более распространен как раз первый тип, в то время, когда горизонтальные стабилизаторы создают силу, противоположную по направлению к подъемной силе крыльев. Ну и вторая их функция – управление по оси тангажа. Тут все полностью кроме этого как и с вертикальным оперением. В наличии отклоняемая задняя кромка профиля, которая управляется из кокпита и увеличивает или сокращает силу, которую формирует горизонтальный стабилизатор благодаря собственному аэродинамическому профилю.

    Тут необходимо осуществить оговорку, довольно отклоняемой задней кромки, поскольку кое-какие самолеты, в особенности боевые, имеют всецело отклоняемые плоскости, а не только их части, это относится и вертикального оперения, но функции и принцип работы от этого не изменяются.

    Виды горизонтальных хвостовых оперений.

    А сейчас о том, из-за чего конструкторы отходят от хорошей схемы. на данный момент самолетов огромное их предназначение и количество вместе с чертями очень резко отличается. И, по сути, тут нужно разбирать конкретный класс самолетов а также конкретный самолет в отдельности, но чтобы выяснить ключевые принципы хватит нескольких примеров.

    Первый — уже упоминаемый Ан-225, имеет двойное вынесенное вертикальное оперение по той причине, что он может нести на себе такую объемную вещь как челнок Буран, что в полете затенял бы в аэродинамическом замысле единственный вертикальный стабилизатор, расположенный по центру, и эффективность его была бы очень низкой. Т-образное оперение Ту-154 кроме этого имеет собственные преимущества.

    Потому, что оно находится кроме того за задней точкой фюзеляжа, по обстоятельству стреловидности вертикального стабилизатора, плечо силы в том месте самое громадное (тут возможно снова прибегнуть к линейке и двум пальцам различных рук, чем ближе задний палец к переднему, тем громадное упрочнение на него нужно), потому его возможно сделать меньшим и не таким замечательным, как при хорошей схеме. Но сейчас все нагрузки, направленные по оси тангажа передаются не на фюзеляж, а на вертикальный стабилизатор, почему тот нужно без шуток усиливать, соответственно и утяжелять.

    Помимо этого, еще и дополнительно тащить трубопроводы гидравлической совокупности управления, что еще больше прибавляет вес. Да и в целом такая конструкция более сложная, соответственно менее надёжная. Что же касается истребителей, из-за чего они применяют всецело отклоняемые парные и плоскости вертикальные стабилизаторы, то главная причина — повышение эффективности.

    Так как ясно, что лишней маневренности у истребителя быть не имеет возможности.

    Посадка с разрушенным хвостовым оперением

    Оперение самолета. Общие сведения.

    Опере́ние (оперение летательного аппарата, ракеты) - совокупность аэродинамических поверхностей, обеспечивающих устойчивость, управляемость и балансировку самолёта в полёте. Состоит из горизонтального и вертикального оперения.

    Общие сведения

    Основные требования к оперению:

    · обеспечение высокой эффективности при минимальном лобовом сопротивлении и наименьшей массе конструкции;

    · возможно меньшее затенение оперения другими частями самолёта - крылом, фюзеляжем, гондолами двигателей, а также одной части оперения другой;

    · отсутствие вибраций и колебаний типа флаттера и бафтинга;

    · более позднее, чем на крыле, развитие волнового кризиса.

    Горизонтальное оперение (ГО)

    Обеспечивает продольную устойчивость, управляемость и балансировку. Горизонтальное оперение состоит из неподвижной поверхности - стабилизатора и шарнирно подвешенного к нему руля высоты. У самолётов с хвостовым расположением горизонтальное оперение устанавливается в хвостовой части самолёта - на фюзеляже или на верху киля (T-образная схема).

    В схеме «утка» оперение располагается в носовой части самолёта перед крылом. Возможна комбинированная схема, когда у самолёта с хвостовым оперением ставится дополнительное переднее оперение - схема с ПГО (переднее горизонтальное оперение), позволяющая использовать преимущества обеих указанных схем. Схемы «бесхвостка», «летающее крыло» горизонтального оперения не имеют.

    Неподвижный стабилизатор обычно имеет фиксированный угол установки относительно продольной оси самолёта. Иногда предусматривается регулировка этого угла на земле. Такой стабилизатор называется переставным.

    На тяжёлых самолётах для повышения эффективности продольного управления угол установки стабилизатора с помощью дополнительного привода может изменяться в полёте, обычно на взлёте и посадке, а также для балансировки самолёта на заданном режиме полёта. Такой стабилизатор называется подвижным.



    На сверхзвуковых скоростях полёта эффективность руля высоты резко падает. Поэтому у сверхзвуковых самолётов вместо классической схемы ГО с рулем высоты применяется управляемый стабилизатор (ЦПГО), угол установки которого регулируется лётчиком с помощью командного рычага продольного управления или бортовым компьютером самолёта. Руль высоты в этом случае отсутствует.

    Вертикальное оперение (ВО)

    Обеспечивает самолёту путевую устойчивость, управляемость и балансировку относительно вертикальной оси. Оно состоит из неподвижной поверхности - киля и шарнирно подвешенного к нему руля направления.

    Цельноповоротное ВО применяется весьма редко (например, на Ту-160). Эффективность ВО можно повысить путём установки форкиля - переднего наплыва в корневой части киля, или дополнительным подфюзеляжным гребнем. Другой способ - применение нескольких (обычно не более двух одинаковых) килей. Непропорционально большой киль, или два киля - часто признак сверхзвукового самолёта, для обеспечения путевой устойчивости на больших скоростях.

    Формы опереният

    Т-образное хвостовое оперение самолёта (Ту-154)

    Формы поверхностей оперения определяются теми же параметрами, что и формы крыла: удлинением, сужением, углом стреловидности, аэродинамическим профилем и его относительной толщиной. Как и в случае с крылом различают трапецевидное, овальное, стреловидное и треугольное оперение.

    Схема оперения определяется числом его поверхностей и их взаимным расположением. Наиболее распространены следующие схемы:

    · Схема с центральным расположением вертикального оперения в плоскости симметрии самолёта - горизонтальное оперение в этом случае может располагаться как на фюзеляже, так и на киле на любом удалении от оси самолёта (схему с расположением ГО на конце киля принято называть Т-образным оперением ).
    Пример: Ту-154

    · Схема с разнесенным вертикальным оперением - (часто называют Н-образным ) две его поверхности могут крепиться по бокам фюзеляжа или на концах ГО. В двухбалочной схеме фюзеляжа поверхности ВО устанавливаются на концах фюзеляжных балок. На самолётах типа «утка», «бесхвостка», «летающее крыло» разнесенное ВО устанавливается на концах крыла или в средней его части.
    Пример: Пе-2, Lockheed P-38 Lightning

    · V-образное оперение, состоящее из двух наклонных поверхностей, выполняющих функции и горизонтального и вертикального оперения. Из-за сложности управления и, как следствие, малой эффективности такое оперение широкого применения не получило. (Правда применение компьютерных пилотажных систем изменило ситуацию в лучшую сторону. Текущее управление V-образным оперением в оснащённых им новейших самолётах берёт на себя бортовой компьютер, - пилоту лишь достаточно задать стандартной ручкой управления направление полёта (влево-вправо, вверх-вниз), и компьютер сделает всё, что для этого нужно).
    Пример: F-117

    · Скошенное оперение (типа «бабочка», или оперение Рудлицкого)
    Пример: Me.262 HG III

    Стабилизаторы и кили

    Имеют полную аналогию с крылом, как по составу и конструкции основных элементов - лонжеронов, продольных стенок, стрингеров, нервюр, так и по типу силовых схем. Для стабилизаторов вполне успешно используются лонжеронная, кессонная и моноблочная схемы, а для килей последняя схема применяется реже, из-за определённых конструктивных трудностей при передаче изгибающего момента с киля на фюзеляж. Контурный стык силовых панелей киля с фюзеляжем в этом случае требует установки большого числа силовых шпангоутов или установки на фюзеляже в плоскости силовых панелей киля мощных вертикальных балок, опирающихся на меньшее число силовых шпангоутов фюзеляжа.

    У стабилизаторов можно избежать передачи изгибающих моментов на фюзеляж, если лонжероны или силовые панели левой и правой его поверхностей связать между собой по кратчайшему пути в центральной его части. Для стреловидного стабилизатора это требует перелома оси продольных элементов по борту фюзеляжа и установки двух усиленных бортовых нервюр. Если продольные элементы такого стабилизатора без перелома осей доходят до плоскости симметрии самолёта, то кроме бортовых силовых нервюр, передающих крутящий момент, потребуется ещё одна силовая нервюра в плоскости симметрии самолёта.

    Свои особенности имеет конструкция управляемого стабилизатора - см. ЦПГО

    Рули и элероны

    Ввиду полной идентичности конструкции и силовой работы рулей и элеронов в дальнейшем для краткости речь будет идти только о рулях, хотя все сказанное будет полностью применимо и к элеронам. Основным силовым элементом руля (и элерона, естественно), работающим на изгиб и воспринимающим практически всю перерезывающую силу, является лонжерон, который опирается на шарнирные опоры узлов подвески.

    Основная нагрузка рулей - воздушная аэродинамическая, возникающая при балансировке, маневрировании самолёта или при полёте в неспокойном воздухе. Воспринимая эту нагрузку, лонжерон руля работает как неразрезная многоопорная балка. Особенность его работы заключается в том, что опоры руля закреплены на упругих конструкциях, деформации которых под нагрузкой существенно влияют на силовую работу лонжерона руля.

    Восприятие крутящего момента руля обеспечивается замкнутым контуром обшивки, который в местах выреза под кронштейны крепления замыкается стенкой лонжерона. Максимальный крутящий момент действует в сечении кабанчика управления, к которому подходит тяга управления. Местом расположения кабанчика (тяги управления) по размаху руля можно существенно влиять на деформации руля при кручении.

    Оперение самолета - стреловидное, свободнонесущее, Т-образное. Вертикальное оперение включает в себя неподвижный киль и руль направ­ления, снабженный триммером и сервокомпенсатором, аэродинамический профиль вертикального оперения, симметричный, с относительной толщиной 11%. Горизонтальное оперение включает в себя цельный, управляемый в полете стабилизатор и две половины руля высоты, снабженные триммера­ми; управление стабилизатором электрогидравлическое, дистанционное.

    На киле предусмотрены резервные механические нерегулируемые упоры, ограничивающие перемещение стабилизатора в пределах от +1˚45" до -12˚45". Аэродинамический профиль горизонтального оперения типа ПАСА-10%. Руль направления и руль высоты имеют аэродинамическую ком­пенсацию и весовую балансировку. В передних кромках киля и стабили­затора расположены каналы воздушно-термической системы противообле­денения. Киль обеспечивает путевую устойчивость самолета, крепится к шпангоутам 66, 71 и 70 фюзеляжа

    Рис. 36. Спойлер:

    1-интерцептор; 2, 3-вторая и первая секции спойлера; 4, 5, 6-первый, второй и третий узлы подвески второй секции спойлера к крылу; 7-сотовый заполнитель; 8-резиновый профиль; 9-силовая нервюра; 10-сое­динительный болт; 11-кронштейн спойлера; 12-кронштейн крыла.

    тремя силовыми узлами по первому, второму и третьему лонжеронам соответственно и бортовыми фрезерован­ными угольниками 12 (рис. 37). Первый и второй узлы (А и Б) креп­ления киля к фюзеляжу однотипны. К корневым участкам первого и вто­рого лонжеронов болтами приклепано по два фасонных фитинга 16 и 21 (по одному слева и справа) и два стыковых угольника 22 и 24. Каждый фитинг лонжерона соединяется с фитингом соответствующего шпангоута фюзеляжа четырьмя18мм болтами на первом узле и16мм болтами - на втором узле. Фитинги третьего узла крепления киля к фюзеляжу на тре­тьем лонжероне выполнены за одно целое с корневыми участками его по­лок и стыкуются каждый с фитингом 13 шпангоута 70 шестью болтами22мм. По всем трем узлам крепления лонжеронов стыковыми угольниками к со­ответствующим шпангоутам фюзеляжа и крепление киля по бортовому уго­льнику к фюзеляжу выполнено болтами, т.е. киль съемный. В верхней части киля крепится управляемый стабилизатор; передняя, корневая, часть киля плавно переходит в обтекатель воздухозаборника среднего двигателя Д-36 и служит капотом вспомогательной силовой установки ТА-6В. В киле размещены: механизм перестановки стабилизатора, меха­низм стопорения рулей высоты и направления, антенны радиооборудова­ния, трубопроводы противообледенительной системы, тяги и качалки управления рулями, а также проложены коммуникации самолетных систем. На законцовке киля установлен проблесковый маяк МСЛ-3. В хвостовой части киля установлены четыре кронштейна узлов крепления руля нап­равления. Киль состоит из каркаса, обшивки, отъемной носовой части и законцовки.

    Каркас киля, состоящий из продольного и поперечного наборов, закрыт гладкой дюралюминиевой обшивкой, передняя кромка которой вы­полнена в виде съемного кока. В верхней передней части киля располо­жена законцовка, плавно сопрягающаяся с управляемым стабилизатором.

    Продольный набор каркаса состоит из трех лонжеронов, передней и задней стенок, по 19 правых и левых стрингеров. Лонжероны и перед­няя стенка представляет собой клепаные балки, состоящие из поясов таврового сечения и стенок, подкрепленных стойками из уголковых про­филей и имеющих отверстия облегчения.

    Поперечный набор киля образован нервюрами с 1 по 22, концевой нервюрой 23 и тринадцатью дополнительными носками, расположенными между стенкой и первым лонжероном. По нервюре 1 киль стыкуется с капотом двигателя ТА-6В вспомогательной силовой установки, нервюры 2-22, расположены перпендикулярно оси третьего лонжерона, кон­цевая нервюра 23 установлена па­раллельно линии полета. Нервюры 1, 3, 5, 9, 12, 13, 17, 22 и 23 си­ловые, остальные нервюры промежуточные. Нервюра 1 представляет собой торцовый носок киля, образованный верхней и нижней стенками, стыко­вым профилей, установленным на стенке по контуру фюзеляжа, и уголко­выми профилями, усиливающими нижнюю часть нервюры. Верхняя стенка снабжена зигами жесткости, имеет окантованное отверстие для прохода выхлопного сопла двигателя TА-6В и является противопожарной перего­родкой отсека ВСУ. В верхней части киля от стрингера 7 до второго лонжерона установлены два фитинга, усиливающих конструкцию в связи с установкой на этом участке кронштейна крепления механизма переста­новки стабилизатора. Фитинги отштампованы из материала АКБ. Хвосто­вые части нервюр 9 и 17 усиленные; каждая часть образована двумя стенками швеллерного сечения, между которыми вклепан кронштейн узла крепления руля направления, а нервюры 12 и 13 удлинены за заднюю стен­ку киля и вместе с набором диафрагм и накладок

    Рис. 37. Крепление киля к фюзеляжу:

    1-распорный уголковый профиль; 2-первый лонжерон киля; 3-нервюра 1; 4-обшивка киля; 5-нервюра 3; 6-нервюра 4; 7-второй лонже­рон киля; 8-обшивка фюзеляжа; 9-нервюра 5; 10-уголковый профиль; II-третий лонжерон киля;

    12-бортовой угольник; 13-фитинг шпангоута 70; 14-шпангоут 70; 15-балка подвески среднего двигателя; 16-фитинг вто­рого лонжерона; 17-шпангоут 71; 18-фитинг шпангоута 71; 19-фитинг первого лонжерона; 20-шпангоут 66; 21-фитинги первого лонжерона; 22-стыковой угольник первого лонжерона; 23-стыковой угольник нервюры 3; 24-стыковой угольник второго лонжерона; 25-стыковой угольник третье­го лонжерона; 26-накладка.

    усиливают каркас киля в месте установки кронштейна опорного узла крепления руля направле­ния. На кронштейне, соединяющем хвостовые части нервюр 12 и 13, рас­положены упоры, ограничивающие углы отклонения руля направления. Нервюра 22 располагается между узлом крепления стабилизатора и зад­ней стенкой киля, представляет собой штампованную стенку с двумя приклепанными кронштейнами четвертого узла крепления руля направле­ния. Нервюра 23 является концевой, на ней установлены кронштейны крепления стабилизатора и его нижние упоры. Нервюра швеллерного се­чения отштампована из материала АК6, имеет технологические отверс­тия, на участке первого лонжерона с ней стыкуется штампованный из листового дюраля носок. Обшивка киля состоит из дюралевых листов, которые крепятся к каркасу заклепками и болтами. В обшивке сделаны эксплуатационные люки для подхода к механизму перестановки стабили­затора, агрегатам управления и антеннам радиооборудования, а также предусмотрены съемные панели для подхода к коммуникациям самолетных систем. На правом борту киля в районе выхлопного отверстия ВСУ обшив­ка выполнена из материала Д19АМО с последующей закалкой; на эту об­шивку наклепывается защитный экран из титанового листа OT4-Iтолщи­ной 0,6мм с подслоем стеклоткани. Носовая часть киля сделана съем­ной для подхода к трубопроводам противообледенительной системы, кре­пится к каркасу киля по контуру болтами с самоконтрящимися гайками. Носовая часть образована наружной и внутренней обшивками и каркасом, состоящим из диафрагм и продольного кожуха. В канале, образованном двумя обшивками и кожухом, закреплен трубопровод противообледенитель­ной системы. Горячий воздух, поступающий в носовую часть киля, рас­пределяется через поперечные прямоугольные каналы, образованные на­ружной обшивкой и приклепанной к ней внутренней гофрированной обшив­кой.

    Законцовка киля состоит из набора диафрагм и стрингеров, к ко­торым приклепана обшивка, на поверхности обшивки справа и слева на силовой диафрагме установлены стальные накладки для упорных роликов стабилизатора и верхние упоры, ограничивающие отклонение стабилиза­тора при отсоединенном управлении.

    Руль направления крепится к килю на четырех уз­лах, расположенных по осям нервюр 9, 13, 17 и 22 киля и обеспечивает путевую управляемость самолета. Первый, третий и четвертый узлы кре­пления однотипные. Каждый узел состоит из кронштейна руля и двух кронштейнов киля, соединенных серьгой. Кронштейны руля двухушковые, крепятся к лонжерону болтами и самоконтрящимися гайками. Ответные кронштейны киля крепятся к соответствующим нервюрам и задней стенке киля болтами; для соединения с серьгой снабжены шарнирными подшипни­ками. В отверстия серег со стороны соединения с кронштейнами руля запрессована подшипники. Второй узел крепления является опорным, во­спринимает осевые и радиальные нагрузки, состоит из двух торцовых кронштейнов руля и кронштейна киля, соединенные серьгой. Торцовые кронштейны прикреплены болтами и заклепками к лонжерону и балке руля, расположенной между нервюрами 11 и 17. Ответный кронштейн на киле прикреплен болтами и заклепками к удлиненным хвостовым частям нервюр 12 и 13. Все кронштейны и серьги узлов отштампованы из сплава АК6. Руль направления имеет однолонжеронную схему, состоит из каркаса, обшивки, триммера и сервокомпенсатора. Кроме лонжерона в каркас вхо­дит продольная балка между нервюрами 11 и 17, хвостовая балка, 35 нервюр, каркасы нижнего и верхнего хвостовых отсеков.

    Лонжерон представляет собой клепаную балку с поясами из прессованных уголко­вых профилей. Стенка лонжерона имеет отверстия облегчения и подкреп­лена стойками из прессованных уголковых профилей. На лонжероне уста­новлены кронштейны узлов крепления руля к килю и кронштейны крепления элементов управления рулем, сервокомпенсатором и триммером.

    Обшивка руля направления состоит из лобовой, носовой и средней частей. Носовая обшивка состоит из правых и левых листов дюраля тол­щиной 1,0мм. Вдоль носовой кромки руля на участках между вырезами под узлы крепления установлены балансиры. Балансирами являются лобо­вые обшивки из стали ЗОХГСА-Л2, к которым с внутренней стороны кре­пятся болтами дополнительные стальные грузы. Средняя обшивка между лонжероном и хвостовым профилем образована правым и левым листами дюраля толщиной 0,8мм. На обшивке в районе нервюр 22 и 24 по правому борту и в районе нервюр 15 и 17 по левому борту установлены обтека­тели, закрывающие тяги управления триммером и сервокомпенсатором.

    Хвостовые отсеки руля направления расположены в нижней части руля между нервюрами 1 и 10 и в верхней части - между нервюрами 28 и 35. В промежутке между этими отсеками к рулю подвешены сервоком­пенсатор и триммер. Каждый хвостовой отсек состоит из продольной сте­нки, поперечных диафрагм, вкладыша в заднюю кромку и обшивки.

    Сервокомпенсатор РН однолонжеронной схемы пред­назначен для уменьшения шарнирного момента при управлении самолетом и крепится к рулю на трех узлах. Первый узел расположен по нервюре 10, второй узел - по нервюре 16 и третий - по нервюре 20 руля направле­ния. Каждый узел состоит из фитинга (кронштейна) сервокомпенсатора и фитинга (кронштейна) руля, соединенных между собой серьгой. Кронштей­ны и серьги узлов отштампованы из сплавов АК6 иAK4-1. Сервокомпен­сатор имеет аэродинамическую компенсацию и весовую балансировку. Каркас сервокомпенсатора состоит из лонжерона таврового сечения, 10 диафрагм. 5 носков, подкрепляющих вырезы под кронштейны узлов под­вески, вкладыша в заднюю кромку и фитинга, усиливающего лонжерон в месте крепления рычага управления. Каркас сервокомпенсатора обшит листовым дюралюминием толщиной 0,6 мм.

    Триммер РН предназначен для путевой балансировки само­лета и крепится к рулю на трех узлах. Первый узел расположен по нер­вюре 20 руля направления, второй узел - по нервюре 24 и третий узел - по нервюре 28. Узлы крепления триммера по конструкции подобны узлам сервокомпенсатора. На правом борту триммера снаружи, совместно с кро­нштейном второго узла установлены два рычага. Один рычаг с впрессо­ванным шарикоподшипником выполнен из титанового сплава ВТ22, к этому рычагу подсоединяется тяга от электромеханизма управления триммером. Другой рычаг с впрессованным шарнирным подшипником отштампован из сплава АК6. К этому рычагу подсоединяется тяга от датчика ДС-10 сис­темы сигнализации положения триммера.

    Рис.38. Схема оперения

    Стабилизатор обеспечивает продольную устойчивость самолета, уравновешивая момент, возникающий вследствие несовпадения точки приложения аэродинамической силы, действующей на крыло, с центром тяжести самолета. Аэродинамическая сила крыла созда­ет обычно момент на пикирование, для уравновешивания которого гори­зонтальное оперение должно создавать подъемную силу, направленную вниз. С этой целью стабилизатор самолета выполнен управляемым в полете. Углы установки стабилизатора от +1˚до -12˚. На стоянке угол установки +1° для того, чтобы от ветра и струй газового потока маневрирующих самолетов не происходило опрокидывания на хвост. Стабилизатор крепит­ся к килю с помощью переднего и заднего узлов.

    Передний узел состоит из двух аналогичных по конструкции кронш­тейнов, отштампованных из сплава АК6. Кронштейны болтами и заклепками закреплены к переднему лонжерону и соединяются стыковыми болтами с гайкой механизма перестановки через промежуточные кронштейны.

    Задний узел крепления состоит из двух проушин балки, соеди­няющей правую и левую половину второго лонжерона стабилизатора, крон­штейна, закрепленного болтами и заклепками к третьему лонжерону и концевой нервюре киля, двух переходников. С помощью переходников про­ушины балки стабилизатора соединяются с кронштейном киля стыковыми болтами, которые одновременно являются осью поворота горизонтального оперения. Балка стабилизатора, переходники и кронштейн киля отштампо­ваны из титанового сплава ВТ-22.

    Стабилизатор неразъемный, двухлонжеронной схемы, состоит из кар­каса, обшивки, двух носовых частей, двух законцовок, хвостового обте­кателя и боковых зализов. Ось симметрии стабилизатора в плане совпа­дает с продольной осью самолета. В продольный набор каркаса входят: первый лонжерон, второй лонжерон с балкой, задняя стенка и стрингеры. Левая и правая половины первого лонжерона стыкуются между собой по оси симметрии стабилизатора, обе половины второго лонжерона стыкуются с балкой. Всего каждая половина стабилизатора имеет 16 нервюр, из них 1, 2, 3, 4, 6, 9, 12, 15 и 16 силовые. Нервюра 1 проходит по оси симметрии и является общей для двух половин стабилизатора, по ней стыкуются об­шивки и стрингеры. В хвостовые части нервюр 6, 9, 12 и 15 вмонтированы кронштейны узлов навески руля высоты. Нервюра 16 одновременно являет­ся продольной диафрагмой каркаса законцовки стабилизатора. К ней кре­пятся торцовый узел навески руля высоты, стрингеры, обшивка стабили­затора, диафрагмы и обшивка законцовки.

    Обшивка каждой половины стабилизатора от первого лонжерона до задней стенки делится на верхнюю и нижнюю. Обшивки стыкуются по оси симметрии стабилизатора. Верхняя обшивка выполнена из листового дю­раля толщиной 1,2 мм, нижняя - из листового дюраля толщиной 1,5 мм. Между нервюрами 9 и 16 обшивка имеет окна химического фрезерования до толщины 0,8 мм. Нижняя обшивка состоит из двух листов с продольным стыком по стрингеру 3. Обшивка крепится к каркасу заклепками и бол­тами. В обшивке сделаны окна и эксплуатационные люки для подхода к качалкам управления рулем высоты и к агрегатам ПОС. Вырезы под люки в обшивке усилены окантовками. Крышки большинства люков в закрытом положении удерживаются болтами с анкерными гайками. Конец тяги упра­вления, идущей к рычагу каждой половины руля высоты, закрыт обтека­телем, который прикреплен к нижней обшивке в районе нервюр 8 и 9.

    Носовая часть стабилизатора несъемная, состоит из правой и ле­вой половины. Каждая половина носовой части крепится к полкам перво­го лонжерона к концевым нервюрам 16. Каждая носовая часть образована наружной и внутренней обшивками и каркасом, состоящим из носков, ди­афрагм, кожуха и вверху разрезных стрингеров. В канале, образованном двумя обшивками и кожухом, закреплен трубопровод противообледените­льной системы. Горячий воздух, поступающий из трубопровода противо­обледенительной системы в носовую часть стабилизатора, распределяется через поперечные прямоугольные каналы, образованные наружной и при­клепанной к ней внутренней обшивками. В корневой части каждого нос­ка установлен кронштейн с упорный роликом. Ролики при перестановках стабилизатора, опираясь, катятся по направляющим пластинам законцов­ки киля и исключают поперечные перемещения стабилизатора. Кронштейны крепления роликов отлиты из материала AЛ-19. Для подхода к кронштей­нам с роликами в корневой части каждого носка сделан люк.

    Законцовки стабилизатора несъемные, состоят из торцовых нервюр, набора диафрагм и обшивки. Торцевая нервюра 16 швеллерного сечения неразъемная, гнутая из листового дюраля толщиной 1,0 мм, имеет отвер­стия облегчения. В хвостовую кромку законцовки вклепан сухарь из сте­клотекстолита КАСТ-В и кронштейн для разрядника статического элект­ричества. Законцовка соединяется с носовой частью стабилизатора бол­тами и анкерными гайками, а с остальной частью - заклепками.

    Хвостовой обтекатель стабилизатора является продолжением сред­ней части его и состоит из продольных стрингеров, поперечных диаф­рагм, обшивки и съемного хвостового кока. Обшивка выполнена из лис­тового дюраля толщиной 0,6мм и 1,0мм, приклепана к стрингерам и диа­фрагмам. Хвостовой кок состоит из трех диафрагм и радиопрозрачной обшивки из стеклоткани, подсоединяется к обтекателю на болтах.

    Боковые зализы вместе со средней частью стабилизатора закрывают выступающие за пределы киля задние узлы крепления стабилизатора. Зализы съемные, расположены на участке между законцовкой киля и хвостовым обтекателей стабилизатора. Каждый зализ состоит из обшивки

    и каркаса.

    Руль высоты однолонжеронной схемы снабжен аэродинамической компенсацией и весовой балансировкой, состоит из двух половин. Каж­дая половина руля имеет триммер и подвешена к стабилизатору на шести узлах. Балансировка руля высоты выполнена в виде лобовой обшивки из листовой стали 30ХГСА-Л2, к которой с внутренней стороны болтами и заклепками закреплен дополнительный стальной груз. Около четвертого и пятого узлов подвески в носовой части руля установлены выносные балансировочные свинцовые грузы, помещенные в дюралевых кронштейнах. Каждая половина руля высоты состоит из каркаса, обшивки и триммера. Каркас половины руля состоит из лонжерона, носовых диафрагм, 35 нер­вюр хвостовой части руля и профилей, окантовывающих вырез под трим­мер. Лонжерон представляет собой балку швеллерного сечения, гнутую из листового дюраля, подкрепленную стойками и имеющую подштамповки стенки в местах установки кронштейнов узлов крепления руля. Носовые диафрагмы отштампованы из листового дюраля. На первой торцевой диаф­рагме расположены упоры, ограничивающие углы отклонения руля. Носо­вая обшивка состоит из верхних и нижних листов дюраля толщиной 1,5 мм. Хвостовая обшивка состоит также из верхних и нижних листов дюраля толщиной 0,6 мм. Между обшивками по хвостовой кромке вклеен сухарь из стеклотекстолита КАСТ-В. Обшивка к каркасу руля крепится заклеп­ками. На нижней обшивке каждой половины руля смонтировано по два об­текателя, закрывающих выходящие наружу части тяг управления рулем к триммером.

    Триммер руля высоты однолонжеронной схемы, имеет аэродинамичес­кую компенсацию и полную весовую балансировку, расположен в корневой части каждой половины руля высоты и подвешен к ней на трех узлах. Каждый узел подвески состоит из кронштейна триммера и кронштейна ру­ля, соединенные между собой серьгой. Носовая часть триммера состоит из набора штампованных диафрагм и обшивки, а хвостовая часть - из торцовых и промежуточных нервюр, хвостового вкладыша и обшивки. Верхняя и нижняя хвостовая обшивка выполнена из одного листа дюраля толщиной 0,6 мм, согнутого вдоль хвостовой кромки. Носовая обшивка также выполнена из верхнего и нижнего листов дюраля толщиной 0,6 мм.