Движение литосферных плит. Движение континентов



Дрейф материков

Обратимся к наиболее важным для обитателей Земли представлениям теории тектоники литосферных плит – крупных, до многих миллиона км 2 , глыб земной литосферы, фундамент которых образуют сильно смятые в складки магматические, метаморфизированные и гранитные породы, прикрытые сверху 3-4 километровым "чехлом" осадочных пород. Рельеф платформы составляют обширные равнины и отдельные горные хребты. Ядром каждого материка является одна или несколько древних платформ, окаймленных горными хребтами. Движение литосферных плит лежит в основе .

Начало XX в. ознаменовалось появлением гипотезы, которой в дальнейшем было суждено сыграть ключевую роль в науках о Земле. Ф. Тейлор (1910), а вслед за ним А. Вегенер (1912) высказали идею о горизонтальных перемещениях материков на большие расстояния (дрейфе материков), но "В 30-е годы XX в. в тектонике утвердилось течение, считавшее ведущим типом движений земной коры вертикальные движения, в основе которых лежали процессы дифференциации вещества мантии Земли. Оно получило название фиксизма, ибо признавало постоянно фиксированным положение блоков коры относительно подстилающей мантии". Однако в 1960-х гг. после открытия в океанах глобальной системы срединно-океанических хребтов, опоясывающих весь земной шар и местами выходящих на сушу, и ряда других результатов происходит возврат к идеям начала XX в. о дрейфе континентов, но уже в новой форме – тектоники плит, которая остается ведущей теорией в науках о Земле. Она вытеснила господствовавшее в середине XX века представление о ведущей роли в смещениях и деформациях земной коры вертикальных движений и вывела на первое место горизонтальные перемещения литосферных плит, включавших не только кору, но и верхи мантии.

Основные положения тектоники плит сводятся к следующему. Литосфера подстилается менее вязкой астеносферой. Литосфера разделена на ограниченное число больших (7) и малых плит, границы которых проводятся по сгущению очагов землетрясений. К числу крупных плит принадлежат: Тихоокеанская, Евразиатская, Северо-Американская, Южно-Американская, Африканская, Индо-Австралийская, Антарктическая. Литосферные плиты, движущиеся по астеносфере, обладают жёсткостью и монолитностью. При этом «континенты не прокладывают себе путь сквозь океаническое дно под воздействием какой-то невидимой силы (что предполагалось в первоначальной версии «дрейфа материков»), а пассивно плывут по мантийному материалу, который поднимается вверх под гребнем хребта и затем распространяется от него в обе стороны». В этой модели океаническое дно «представляется гигантской конвейерной лентой, выходящей на поверхность в рифтовых зонах срединно-океанических хребтов и затем скрывающихся в глубоководных желобах»: расширение (спрединг) ложа океанов в связи с расхождением плит вдоль осей срединных хребтов и рождение новой океанской коры компенсируется её поглощением в зонах поддвига (субдукции) океанской коры в глубоководных желобах, благодаря чему объём Земли остаётся постоянным. Этот процесс сопровождается «многочисленными мелкофокусными землетресениями (с эпицентрами на глубинах нескольких десятков километров) в рифтовых зонах и глубокофокусными землетресениями в районе глубоководных желобов (рис. 12.2, 12.3) .

Рис. 12.2. Схема конвекционного течения в мантии, вызываемого разностью плотностей (по Рингвуду и Грину (из [Стейси, с. 80]). На этой схеме указаны предполагаемые фазовые и химические превращения, сопровождающие конвекционные перемещения вещества мантии из-за изменения давления и температуры на разных глубинах.

Рис.12.3. Схематический разрез Земли на основе гипотезы разрастания (спрединга) океанического дна - б; район глубоководного желоба - в: литосферная плита погружается в астеносферу (А), упирается в ее днище (Б и В) и разламывается – отламывается часть ("слэб") (Г) –. В зоне «трения» плит – мелкофокусные землетрясения (черные кружки), в зоне «упора» и «разлома» плиты – глубокофокусные землетрясения (белые кружки) (по Уеда, 1980)

"Данные сейсмической томографии свидетельствуют о погружении глубоко в мантию наклонных зон повышенных сейсмических скоростей – пластин-слэбов океанской литосферы. Эти данные совпадают с давно установленными по гипоцентрам землетрясений сейсмофокальными поверхностями, достигающими кровли нижней мантии. Впервые было обнаружено, что в ряде случаев слэбы опускаются и на большие глубины, проникая в нижнюю мантию. Поведение погружающихся слэбов оказывается неоднозначным: одни из них, достигая нижней мантии, не пересекают ее, а отклоняются вдоль поверхности, принимая практически горизонтальное положение; другие – пересекают кровлю нижней мантии, но затем образуют раздув и не погружаются глубже; третьи же уходят на большие глубины, в некоторых районах достигая ядра… Важный, результат новейших сейсмотомографических исследований – открытие отрыва нижней части погружающегося слэба. Это явление также не было полной неожиданностью. Сейсмологи констатировали в отдельных регионах исчезновение на некоторой глубине очагов землетрясений, а затем их возникновение вновь еще глубже" [Хаин 2002].

Причина перемещения литосферных плит – тепловая конвекция в мантии Земли. Над восходящими ветвями конвективных течений литосфера испытывает подъём и растяжение, приводящее к раздвигу плит в возникающих рифтовых зонах. С удалением от срединно-океанических рифтов литосфера уплотняется, тяжелеет, поверхность её опускается, что объясняет увеличение глубины океана, и в конечном счёте погружается в глубоководных желобах. В континентальных рифтах затухание восходящих потоков разогретой мантии ведёт к охлаждению и погружению литосферы с образованием бассейнов, заполняемых осадками. В зонах схождения и столкновения плит кора и литосфера испытывают сжатие, мощность коры возрастает, и начинаются интенсивные восходящие движения, ведущие к горообразованию. Все эти процессы, включая движение литосферных плит и слэбов, имеют непосредственное отношение к механизмам формирования полезных ископаемых.

Современные тектонические движения изучаются геодезическими методами, показывающими, что они происходят непрерывно и повсеместно. Скорость вертикальных движений составляет от долей до первых десятков мм, горизонтальных на порядок выше - от долей до первых десятков см в год (Скандинавский п-ов за 25 тыс. лет поднялся на 250 м, Санкт-Петербург за время своего существования поднялся на 1 м). Т.е. причиной землетрясений, извержений вулканов, медленных вертикальных (горы высотой в тысячи метров образуются за миллионы лет) и горизонтальных перемещений (за сотни миллионов лет это приводит к смещениям в тысячи километров) являются медленные, но чрезвычайно мощные перемещения вещества мантии.

«Положения теории тектоники плит прошли экспериментальную проверку в ходе начатого в 1968 г. глубоководного бурения с американского научно-исследовательского судна "Гломар Челленджер", подтвердившего образование океанов в процессе спрединга, в результате исследований рифтовых долин срединных хребтов, дна Красного моря и Аденского залива со спускаемых подводных аппаратов, также установивших реальность спрединга и существование пересекающих срединные хребты трансформных разломов, и, наконец, в изучении современных движений плит различными методами космической геодезии. С позиций тектоники плит находят объяснение многие геологические явления, но вместе с тем выяснилась большая, чем предусматривалась исходной теорией, сложность процессов взаимных перемещений плит… Не получило объяснения в тектонике плит периодическое изменение интенсивности тектонических движений и деформаций, существование устойчивой глобальной сети глубоких разломов и некоторые др. Остаётся открытым вопрос о начале действия тектоники плит в истории Земли, поскольку прямые признаки плитно-тектонических процессов … известны лишь с позднего протерозоя. Тем не менее некоторые исследователи признают проявление тектоники плит начиная с архея или раннего протерозоя. Из др. планет Солнечной системы некоторые признаки тектоники плит усматриваются на Венере".

Тектоника плит, первоначально встреченная со скепсисом, особенно в нашей стране, – пишет академик В.Е. Хаин, – получила убедительное подтверждение в ходе глубоководного бурения и наблюдений с подводных спускаемых аппаратов в океанах, в непосредственных измерениях перемещений литосферных плит методами космической геодезии, в данных палеомагнетизма и других материалах и превратилась в первую действительно научную теорию в истории геологии. Вместе с тем за истекшие четверть века, по мере накопления нового и все более разнообразного фактического материала, добытого с помощью новых инструментов и методов, становилось все более очевидным, что тектоника плит не может претендовать на значение всеобъемлющей, подлинно глобальной модели развития Земли" (Геология…, с.43). Поэтому "довольно скоро после своего оформления, тектоника плит стала превращаться в основу других наук о твердой Земле" …Очень большое взаимовлияние… обнаружилось между геотектоникой и геофизикой с одной стороны, и петрологией (наука о горных породах) и геохимией – с другой. Синтез этих наук уже к началу 70-х годов породил новую, комплексную науку – геодинамику , изучающую всю совокупность глубинных, эндогенных (внутренних) процессов, изменяющих литосферу и определяющих эволюцию ее структуры, изучающей физические процессы, которые обусловливают развитие твердой Земли в целом, и силы, их вызывающие. "Данные сейсмического “просвечивания” Земли, получившего название “сейсмотомография”, показали, что активные процессы, приводящие в конечном счете к изменениям структуры земной коры и рельефа, зарождаются значительно глубже – в нижней мантии и даже на ее границе с ядром. Да и само ядро, как совсем недавно выяснилось, участвует в этих процессах…

Появление сейсмической томографии определило переход геодинамики на следующий уровень, и в середине 80-х годов она породила глубинную геодинамику, ставшую самым молодым и перспективным направлением в науках о Земле. В решении новых задач на помощь, кроме сейсмотомографии, пришли и некоторые другие науки: экспериментальная минералогия, благодаря новой аппаратуре имеющая теперь возможность исследовать поведение минерального вещества при давлениях и температурах, отвечающих максимальным глубинам мантии; изотопная геохимия, изучающая, в частности, баланс изотопов редких элементов и благородных газов в разных оболочках Земли и сравнивающая его с метеоритными данными; геомагнетизм, пытающийся раскрыть механизм и причины инверсий магнитного поля Земли; геодезия, уточняющая фигуру геоида (а также, что не менее важно, горизонтальные и вертикальные перемещения земной коры), и некоторые другие ветви наших знаний о Земле…

Уже первые результаты сейсмотомографических исследований показали, что современная кинематика литосферных плит вполне адекватна… лишь до глубин 300-400 км, а ниже картина перемещений мантийного вещества становится существенно иной…

Однако, теория тектоники литосферных плит продолжает удовлетворительно объяснять развитие земной коры континентов и океанов на протяжении по крайней мере последних 3 млрд лет, а спутниковые измерения перемещения литосферных плит подтвердили наличие перемещений для современной эпохи.

Таким образом, в настоящее время вырисовывается следующая картина. В поперечном сечении земного шара существуют три наиболее активных слоя, каждый мощностью в несколько сотен километров: астеносфера и слой D"" в основании мантии. По-видимому, им принадлежит ведущая роль в глобальной геодинамике, превращающейся в нелинейную геодинамику Земли как открытой системы, т.е. синергетические эффекты типа эффекта Бенара, могут иметь место в мантии и жидком ядре.

Для объяснения непонятного в рамках теории тектоники литосферных плит явления внутриплитного магматизма, и в особенности образования линейных вулканических цепей, в которых возраст построек закономерно увеличивается по мере удаления от современных активных вулканов, была выдвинута в 1963 г. Дж.Вилсоном и обоснована в 1972 г. В.Морганом Гипотеза восходящих мантийных струй (рис. 12.1, 12.5), выступающих на поверхность в “горячих точках” (размещение “горячих точек” на поверхности контролируется ослабленными, проницаемыми зонами в коре и литосфере, классический пример современной “горячей точки” – о. Исландия.). "Эта плюм-тектоника с каждым годом все более популярна.

Она становится… почти равноправным партнером плейт-тектоники (тектоники литосферных плит). Доказывается, в частности, что глобальный масштаб выноса глубинного тепла через “горячие точки” превосходит тепловыделение в зонах спрединга срединно-океанских хребтов… Имеются серьезные основания предполагать, что корни суперплюмов достигают самых низов мантии… Главная проблема – соотношение конвекции, управляющей кинематикой литосферных плит, с адвекцией (горизонтальным перемещением), вызывающей подъем плюмов. Они уже в принципе не могут быть независимыми процессами. Однако поскольку каналы, по которым поднимаются мантийные струи, более узкие, пока нет сейсмотомографических признаков его подъема из нижней мантии.

Очень важен вопрос о стационарности плюмов. Краеугольным камнем гипотезы Вилсона-Моргана было представление о фиксированном положении корней плюмов в подлитосферной мантии и о том, что образование вулканических цепей, с закономерным увеличением возраста построек по мере удаления от современных центров извержений, обязано “прошиванию” движущихся над ними литосферных плит горячими мантийными струями… Однако совершенно бесспорных примеров вулканических цепей гавайского типа не так уж много… Таким образом, в проблеме плюмов остается еще много неясного".

Геодинамика

В геодинамике рассматривается взаимодействие сложных процессов, идущих в коре и мантии. Один из вариантов геодинамики, дающий более сложную картину движения мантии, чем описанная выше (рис.12.2), разрабатывается членом-корреспондентом РАН Е.В. Артюшковым в его книге "Геодинамика" (М., Наука, 1979). На этом примере видно как переплетаются различные физические и химические модели в реальном геодинамическом описании.

Согласно изложенной в этой книге концепции основным источником энергии, для всех тектонических процессов является процесс гравитационной дифференциации вещества, который происходит в нижней мантии. После отделения от породы нижней мантии тяжелой компоненты (железа и пр.), которая опускается в ядро, «остается смесь твердых веществ, более легкая, чем вышележащая нижняя мантия… Расположение слоя легкого материала под более тяжелым веществом неустойчиво… Поэтому накапливающийся под нижней мантией легкий материал периодически собирается в крупные блоки размером порядка 100 км и всплывает в верхние слои планеты. Из этого материала за время жизни Земли сформировалась верхняя мантия.

Нижняя мантия скорее всего представляет собой первичное, еще не продифференцированное вещество Земли. В процессе эволюции планеты происходит рост ядра и верхней мантии за счет нижней мантии.

Наиболее вероятно, что подъем блоков легкого материала в нижней мантии происходит вдоль каналов (см. рис. 12.6), в которых температура вещества сильно повышена, а вязкость резко понижена. Повышение температуры связано с выделением большого количества потенциальной энергии при подъеме легкого материала в поле силы тяжести на расстояние ~2000 км. Пройдя через такой канал, легкий материал также сильно нагревается, на величину ~1000°. Поэтому в верхнюю мантию он поступает аномально нагретым и более легким по отношению к окружающим областям.

Благодаря пониженной плотности легкий материал всплывает в верхние слои верхней мантии, вплоть до глубин в 100-200 км и менее. Температура плавления составляющих его веществ с понижением давления сильно падает. Поэтому на небольших глубинах происходит частичное плавление легкого материала и вторичная дифференциация по плотности, после первичной дифференциации на границе ядро - мантия. Выделяющиеся при дифференциации более плотные вещества погружаются в нижние части верхней мантии, а наиболее легкие - всплывают наверх. Совокупность движений вещества в мантии, связанных с перераспределением в ней веществ с различной плотностью в результате дифференциации, можно назвать химической конвекцией.

Подъем легкого материала по каналам в нижней мантии происходит периодически с интервалами примерно в 200 млн. лет. В эпоху его подъема за время в несколько десятков миллионов лет и менее в верхние слои Земли с границы ядро - мантия поступают крупные массы сильно нагретого легкого материала, соответствующие по объему слою верхней мантии мощностью в несколько десятков километров и более. Однако внедрение легкого материала в верхнюю мантию происходит не повсеместно. Каналы в нижней мантии расположены на больших расстояниях друг от друга, порядка нескольких тысяч километров. Они могут образовывать и линейные системы, где каналы располагаются ближе друг к другу, но сами системы также будут сильно удалены друг от друга. Прошедший через каналы легкий материал в верхней мантии всплывает в основном вертикально и заполняет области, расположенные над каналами (см. рис. 12.6), не распространяясь на большие расстояния в горизонтальном направлении. В верхних частях мантии недавно внедрившиеся крупные объемы легкого материала образуют сильно выраженные высокотемпературные неоднородности с повышенной электропроводностью, пониженными скоростями упругих волн и их повышенным затуханием. Горизонтальный масштаб неоднородностей в поперечном направлении ~ 1000 км…

В верхних слоях верхней мантии происходит резкое понижение вязкости ее вещества. Благодаря этому на глубинах в среднем от 100 до 200 км образуется слой пониженной вязкости -астеносфера . Ее вязкость в областях сравнительно холодной мантии η ~ 10 19 - 10 20 пуаз.

Там, где в астеносфере расположены недавно поднявшиеся с границы ядро-мантия крупные массы легкого нагретого материала, вязкость этого слоя падает еще сильнее, а мощность увеличивается. Над астеносферой находится много более вязкий слой - литосфера , которая в общем случаевключает кору и верхние, наиболее холодные и вязкие слои верхней мантии . Мощность литосферы в стабильных областях ~100 км и достигает несколько сотен км. Значительное повышение вязкости, по крайней мере на три порядка величины, происходит и в мантии под астеносферой.

Химическая конвекция связана с большими перемещениями крупных масс вещества в верхней мантии. Однако течения в мантии сами по себе не приводят к значительным вертикальным или горизонтальным смещениям литосферы. Это связано с резким понижением вязкости в астеносфере, играющей роль смазочного слоя между литосферой и основной частью мантии, расположенной под астеносферой. Из-за существования астеносферы вязкое взаимодействие литосферы с течениями в подстилающей мантии, даже при их большой интенсивности, оказывается слабым. Поэтому тектонические движения земной коры и литосферы не связаны непосредственно с этими течениями" [Артюшков, с. 288-291] и механизмы вертикального и горизонтального движения литосферы требуют особого рассмотрения.

Вертикальные движения литосферных плит

В областях внедрения в астеносферу крупных масс сильно нагретого легкого материала происходит его частичное плавление и дифференциация. Выделившиеся при дифференциации наиболее легкие компоненты легкого материала, всплывая наверх, быстро проходят через астеносферу и достигают подошвы литосферы, где скорость их всплывания резко падает. Это вещество в ряде областей образует скопления так называемой аномальной мантии в верхних слоях Земли. По составу она примерно соответствует нормальной мантии под корой в стабильных областях, но отличается гораздо более высокой температурой, до 1300-1500°, и пониженными скоростями продольных упругих волн. Из-за повышенной температуры плотность аномальной мантии оказывается ниже плотности нормальной мантии. Ее поступление под литосферу приводит к изостатическому поднятию последней (по закону Архимеда).

Благодаря высокой температуре вязкость аномальной мантии очень низка. Поэтому поступая к литосфере, она быстро растекается вдоль ее подошвы, вытесняя ранее располагавшееся здесь менее сильно нагретое и более плотное вещество астеносферы. При своем движении аномальная мантия заполняет те области, где подошва литосферы приподнята, - ловушки, и обтекает глубоко погруженные участки подошвы литосферы - антиловушки. В результате кора над ловушками испытывает изостатическое поднятие, а над антиловушками в первом приближении остается стабильной.

Охлаждение коры и верхнего слоя мантии до глубины ~100 км происходит очень медленно и занимает несколько сотен миллионов лет. Поэтому неоднородности мощности литосферы, обусловленные горизонтальными температурными вариациями, обладают большой инерционностью.

Если ловушка расположена вблизи от восходящего потока аномальной мантии из глубины, то она захватывает ее в большом количестве и сильно нагретой. В результате над ловушкой образуется крупное горное сооружение… По этой схеме возникают высокие поднятия в области эпиплатформенного орогенеза (горообразования) в складчатых поясах на месте бывших невысоких горных сооружений, а также на островных дугах.

Слой аномальной мантии в ловушке под бывшим щитом при охлаждении сжимается на 1-2 км. При этом расположенная над ним кора испытывает погружение, а в образующемся прогибе накапливаются осадки. Под их тяжестью литосфера дополнительно погружается. Конечная глубина сформировавшегося таким образом осадочного бассейна может достигать 5-8 км.

Одновременно с уплотнением мантии в ловушке в нижней части базальтового слоя коры может происходить фазовое превращение базальта в более плотные гранатовый гранулит и эклогит. Оно также способно обеспечить сжатие литосферы на величину до 1-2 км и погружение до 5-8 км при заполнении прогиба осадками.

Описанные процессы сжатия в литосфере развиваются медленно, за времена ³ 10 2 млн. лет. Они приводят к образованию осадочных бассейнов на платформах. Их глубина определяется интенсивностью уплотнения мантии в ловушке и вещества коры в базальтовом слое и может достигать 15-16 км.

Тепловой поток, идущий из аномальной мантии, прогревает вышележащую мантию в литосфере и понижает ее вязкость. Поэтому аномальная мантия постепенно вытесняет расположенную в литосфере более плотную нормальную мантию и поступает на ее место к коре, значительно охладившись. При контакте аномальной мантии имеющей температуру Τ~800-900°С, с базальтовым слоем коры в этом слое за время ~ 1-10 млн. лет развивается фазовый переход в эклогит. Плотность эклогита выше плотности мантии. Поэтому он отрывается от коры и погружается в расположенную ниже астеносферу. Сильно утоненная кора изостатически погружается (см. рис. 12.6), и при этом возникает глубокая впадина, вначале заполняющаяся водой, а впоследствии-мощной толщей осадков. По описанной схеме образуются депрессии внутренних морей с консолидированной корой сильно пониженной мощности. Примерами могут служить Черноморская впадина и глубоководные впадины западного Средиземноморья.

Над областями подъема материала из мантии обычно развиваются как восходящие, так и нисходящие движения. Высокие горные сооружения образуются при заполнении высокотемпературной аномальной мантией (T³1000°С) ловушек под щитами и невысокими горами. Внутренние моря возникают на месте соседних осадочных бассейнов при проникновении к коре охладившейся аномальной мантии с Τ~800-900°С. Сочетание образовавшихся на новейшем этапе высоких гор и глубоких впадин в настоящее время характерно для Альпийского геосинклинального пояса Евразии.

Подъем аномальной мантии из глубины происходит в различных областях Земли. Если ловушки оказываются поблизости от таких областей, то они вновь захватывают аномальную мантию, а расположенная над ними территория снова испытывает поднятия. Антиловушки в большинстве случаев обтекаются аномальной мантией, и кора под ними продолжает погружаться.

Горизонтальные движения литосферных плит

Образование поднятий при поступлении к коре аномальной мантии на океанах и континентах увеличивает потенциальную энергию, запасенную в верхних слоях Земли. Кора и аномальная мантия стремятся растечься в стороны, чтобы сбросить этот излишек энергии. В результате в литосфере возникают большие добавочные напряжения, от нескольких сотен бар до нескольких килобар. С этими напряжениями связаны различные типы тектонических движений земной коры.

Разрастание дна океана и дрейф материков происходят вследствие одновременного расширения срединно-океанических хребтов и погружения в мантию плит океанической литосферы. Под срединными хребтами расположены крупные массы сильно нагретой аномальной мантии (см. рис. 12.6). В осевой части хребтов они находятся непосредственно под корой мощностью не более 5-7 км. Мощность литосферы здесь резко сокращена и не превышает мощности коры. Аномальная мантия растекается из области повышенного давления - из-под гребня хребта в стороны. При этом она легко разрывает тонкую океаническую кору, после чего в окружающих хребет океанических областях в литосфере возникает сжимающая сила Σ ХР ~ 10 9 бар·см. Под действием этой силы возможно перемещение плит океанической литосферы в стороны от оси хребта. Разрыв, образующийся в коре на оси хребта, заполняется базальтовой магмой, выплавляющейся из аномальной мантии. Застывая, она образует новую океаническую кору. Таким образом происходит разрастание дна океана.

Вязкость аномальной мантии под срединными хребтами из-за ее высокой температуры сильно понижена. Она может достаточно быстро растекаться, и поэтому разрастание дна океана происходит с высокой скоростью, в среднем от нескольких сантиметров до десяти сантиметров в год. Океаническая астеносфера также обладает сравнительно низкой вязкостью. При скорости движения литосферных плит ~10 см/год вязкое трение между литосферой и астеносферой под океанами практически не препятствует разрастанию дна океана и слабо влияет на напряжения в литосферном слое…

Литосферные плиты движутся по направлению от хребтов к зонам погружения. Если эти области расположены в одном и том же океане, то движение литосферы по астеносфере, имеющей низкую вязкость, происходит с высокой скоростью. В настоящее время такая ситуация характерна для Тихого океана.

Когда разрастание дна имеет место в одном океане, а компенсирующее его погружение - в другом, то происходит дрейф расположенного между ними континента в сторону области погружения. Вязкость астеносферы под континентами много выше, чем под океанами. Поэтому вязкое трение между литосферой и континентальной астеносферой оказывает заметное сопротивление движению, снижая скорость расширения дна, если оно не компенсируется погружением литосферы в мантию в том же океане. В результате, например, разрастание дна в Атлантическом океане происходит в несколько раз медленнее, чем в Тихом.

На границе между континентальной и океанической плитами в области погружения последней в мантию действует сила сжатия ~ 10 9 бар·см. Быстрое относительное перемещение плит вдоль этой границы в условиях сжимающих напряжений приводит к часто повторяющимся сильным землетрясениям". При этом "общей причиной движения коры и мантии является стремление Земли достичь состояния с минимальной потенциальной энергией".

Дивергенция

О том, что Пангея $ 135$ млн. лет тому назад распалась на Лавразию и Гондвану , утверждал еще А. Вегенер . Его гипотеза была названа мобилизмом . Гипотеза стала теорией во второй половине прошлого века. Движение плит литосферы было зафиксировано из космоса.

Земную кору образуют $15$ литосферных плит, из них $ 6$ плит являются самыми крупными.

К ним относятся:

  • Евразийская плита;
  • Североамериканская плита;
  • Южноамериканская плита;
  • Австралийская плита;
  • Антарктическая плита;
  • Тихоокеанская плита.

Скорость движения плит по разным оценкам составляет от $1$ мм-1$8$ см в год.

Относительные перемещения плит могут быть трех типов :

  • Дивергенция;
  • Конвергенция;
  • Сдвиговые перемещения.

Дивергенция или расхождение выражается рифтингом и спредингом .

Раздвижение плит происходит вдоль дивергентных границ. Эти границы в рельефе планеты представлены рифтами , где преобладают деформации растяжения. Кора имеет пониженную мощность, а тепловой поток максимален, в результате происходит интенсивная вулканическая деятельность. В зависимости от того, где находится дивергентная граница, зависит дальнейшее развитие – если граница на континенте , то формируется континентальный рифт . В дальнейшем он может превратиться в океанический бассейн. Рифты на океанической коре приурочены к центральным частям срединно-океанических хребтов, где образуется новая океаническая кора . Её образование происходит за счет того, что из астеносферы поступает магматический базальтовый расплав.

Определение 1

Образование новой океанической коры за счет поступления мантийного вещества получило название спрединг

Срединно-океанические хребты делят на быстро-спрединговые – скорость раздвижения плит составляет $8$-$16$ см в год и медленно-спрединговые. Последние имеют отчетливо выраженную центральную депрессию. Это рифт глубиной $4$-$5$ тыс. метров. Образовавшийся рифт становится началом раскола континента. Постепенно формируется линейная впадина, имеющая глубину сотни метров и ограниченная серией сбросов.

Дальнейшее развитие событий может идти по двум вариантам :

  • Прекращение расширения рифта, заполнение его осадочными породами и превращение в авлакоген ;
  • Раздвижение континентов продолжается и начинается формирование океанической коры.

Определение 2

Авлакоген – это линейная подвижная зона внутри платформы

Конвергенция

Определение 3

Конвергенция – это схождение плит, которое выражается субдукцией и коллизией .

Существует несколько вариантов взаимодействия плит при их столкновении:

  • Столкновение двух океанических плит;
  • Столкновение океанической плиты с континентальной;
  • Столкновение двух континентальных плит.

Замечание 1

Характер столкновения плит может быть разный, в зависимости от этого возможны различные процессы. Процесс субдукции возникает тогда, когда более тяжелая океанская плита поддвигается под континентальную плиту или другую океаническую. Если сталкиваются две океанические плиты, то погружаться будет более древняя , потому что она уже остывшая и плотная. Субдукция связана с формированием новой континентальной коры .

Иногда при взаимодействии континентальной и океанской плит возникает процесс обдукции , но он бывает значительно реже и в наши дни нигде не установлен. Но, тем не менее, участки с эпизодами обдукции известны и произошли они в недавнее геологическое время. В процессе обдукции часть океанской литосферы надвигается на край континентальной плиты. Кора континентальных плит более легкая, чем вещество мантии, поэтому при их столкновении погрузиться в неё не может, что приводит к процессу коллизии . В ходе этого процесса края континентальных плит дробятся и сминаются . В результате происходит формирование крупных надвигов и рост горных сооружений. Например, при столкновении Индостанской и Евразийской плит, произошел рост горных систем Гималаев и Тибета , а океан Тетис в результате этого был закрыт – коллизия завершает закрытие океанического бассейна. Современные конвергентные границы имеют общую протяженность около $57$ тыс. км. Их них $45$ тыс. км являются субдукционными, а остальные относятся к коллизионным границам.

Сдвиговые перемещения по трансформным разломам

Параллельное движение плит и их разная скорость приводит к трансформным разломам , которые представляют собой сдвиговые нарушения . Они очень редки на материках и широко распространены в океанах. В океане эти разломы направлены перпендикулярно срединно-океаническим хребтам и разбивают их на сегменты. На таких участках практически постоянны землетрясения и горообразование. Надвиги, складки, грабены формируются вокруг разлома. На материках такие сдвиговые границы довольно редки и достаточно активным примером такой границы является разлом Сан-Андреас . Он отделяет Тихоокеанскую плиту от Североамериканской плиты. Сан-Андреас тянется на $800$ миль и относится к самым сейсмоактивным районам планеты. Смещение плит здесь относительно друг друга происходит на $0,6$ см в год, а землетрясения, которые возникают один раз в $22$ года, имеют магнитуду более $6$ единиц. В зоне повышенной опасности находится город Сан-Франциско и большая часть бухты одноименного названия, потому что они находятся в непосредственной близости от разлома. Движение плит объясняется мантийной конвекцией, которая является основной их причиной. Конвекция образуется благодаря мантийным теплогравитационным течениям, а источником энергии для них служит разность температуры между центральными областями Земли и частями, близкими к поверхности. Породы, нагретые в центральных зонах, начинают расширяться, уменьшается их плотность и, уступая место более холодным, они всплывают. В результате непрерывности этого процесса возникают замкнутые упорядоченные конвективные ячейки. В её верхней части течение вещества почти горизонтальное, что и определяет перемещение плит.

Замечание 2

Если говорить в общем, то под зонами дивергентных границ располагаются восходящие ветви конвективных ячей, а под зонами конвергентных границ – нисходящие ветви и основной причиной движения литосферных плит является «волочение » конвективными течениями.

Можно назвать еще ряд факторов, действующих на плиты:

  • Гравитационное «соскальзывание» литосферной плиты;
  • Затягивание в зонах субдукции холодной океанской плиты в горячую;
  • Гидравлическое расклинивание базальтами в зонах срединно-океанических хребтов.

Литосферные плиты состоят из океанских и континентальных частей. Ученые считают, что присутствие в составе плиты континента должно «тормозить » движение всей плиты. Так оно и есть, быстрее движутся чисто океанские плиты – Наска, Тихоокеанская . Медленнее движутся плиты, в составе которых большую площадь занимают континенты – Евразийская, Североамериканская, Южноамериканская, Антарктическая, Африканская.

Условно выделяют две группы мезанизмов, которые приводят в движение плиты:

  • Силы мантийного «волочения»;
  • Силы, приложенные к краям плит.

Хотя для каждой плиты движущие механизмы оцениваются индивидуально. Перемещения литосферных плит можно описать на основе теоремы Эйлера . Его теорема утверждает, что у любого вращения трехмерного пространства есть ось и вращение можно описать такими параметрами как координаты оси вращения и угол поворота . При помощи теоремы можно реконструировать положение континентов в прошлые геологические эпохи. Ученые пришли к выводу, анализируя данные о перемещении континентов, что каждые $400$-$600$ млн. лет они снова объединяются в единый суперконтинент, который в дальнейшем подвергается распаду.

December 10th, 2015

Кликабельно

Согласно современной теории литосферных плит вся литосфера узкими и активными зонами - глубинными разломами - разделена на отдельные блоки, перемещающиеся в пластичном слое верхней мантии относительно друг друга со скоростью 2-3 см в год. Эти блоки называются литосферными плитами.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила.

Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков — У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов.

Утверждается, что ученые не совсем уверены, что вызывает эти самые сдвиги и как обозначились границы тектонических плит. Существует бессчетное множество различных теорий, но ни одна из них полностью не объясняет все аспекты тектонической активности.

Давайте хотя бы узнаем как это себе представляют сейчас.

Вегенер писал: «В 1910 г. мне впервые пришла в голову мысль о перемещении материков…, когда я поразился сходством очертаний берегов по обе стороны Атлантического океана». Он предположил, что в раннем палеозое на Земле существовали два крупных материка - Лавразия и Гондвана.

Лавразия - это был северный материк, который включал территории современной Европы, Азии без Индии и Северной Америки. Южный материк - Гондвана объединял современные территории Южной Америки, Африки, Антарктиды, Австралии и Индостана.

Между Гондваной и Лавразией находилось первое морс - Тетис, как огромный залив. Остальное пространство Земли было занято океаном Панталасса.

Около 200 млн лет назад Гондвана и Лавразия были объединены в единый континент - Пангею (Пан - всеобщий, Ге - земля)

Примерно 180 млн лет назад материк Пангея снова начал разделяться на составные части, которые перемешались но поверхности нашей планеты. Разделение происходило следующим образом: сначала вновь появились Лавразия и Гондвана, потом разделилась Лавразия, а затем раскололась и Гондвана. За счет раскола и расхождения частей Пангеи образовались океаны. Молодыми океанами можно считать Атлантический и Индийский; старым - Тихий. Северный Ледовитый океан обособился при увеличении суши в Северном полушарии.

А. Вегенер нашел много подтверждений существованию единого материка Земли. Особенно убедительным показалось ему существование в Африке и в Южной Америке остатков древних животных - листозавров. Это были пресмыкающиеся, похожие на небольших гиппопотамов, обитавшие только в пресноводных водоемах. Значит, проплыть огромные расстояния по соленой морской воде они не могли. Аналогичные доказательства он нашел и в растительном мире.

Интерес к гипотезе движения материков в 30-е годы XX в. несколько снизился, но в 60-е годы возродился вновь, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и «подныривания» одних частей коры под другие (субдукции).

Строение континентального рифта

Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.
Подошва литосферы является изотермой приблизительно равной 1300°С, что соответствует температуре плавления (солидуса) мантийного материала при литостатическом давлении, существующем на глубинах первые сотни километров. Породы, лежащие в Земле над этой изотермой, достаточно холодны и ведут себя как жесткий материал, в то время как нижележащие породы того же состава достаточно нагреты и относительно легко деформируются.

Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.
Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

Схема образования рифта

Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит. Геодинамическую обстановку, при которой происходит процесс горизонтального растяжения земной коры, сопровождающийся возникновением протяженных линейно вытянутых щелевых или ровообразных впадин называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах. Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры. Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).

Строение срединно-океанического хребта. 1 – астеносфера, 2 – ультраосновные породы, 3 – основные породы (габброиды), 4 – комплекс параллельных даек, 5 – базальты океанического дна, 6 – сегменты океанической коры, образовавшие в разное время (I-V по мере удревнения), 7 – близповерхностный магматический очаг (с ультраосновной магмой в нижней части и основной в верхней), 8 – осадки океанического дна (1-3 по мере накопления)

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит. Именно в этих зонах происходит формирование молодой океанической коры.

Столкновение континентальной и океанической литосферных плит

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвигасубдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого. В зонах субдукции начинается процесс формирования новой континентальной коры. Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

Столкновение континентальных литосферных плит

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета. Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры). Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ. Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями. Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рисунке – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли. В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием). Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Тектоника литосферных плит - это первая общегеологическая концепция, которую можно было проверить. Такая проверка была проведена. В 70-х гг. была организована программа глубоководного бурения. В рамках этой программы буровым судном «Гломар Челленджер», было пробурено несколько сотен скважин, которые показали хорошую сходимость возрастов, оцененных по магнитным аномалиям, с возрастами, определенными по базальтам или по осадочным горизонтам. Схема распространения разновозрастных участков океанической коры показана на рис.:

Возраст океанской коры по магнитным аномалиям (Кеннет, 1987): 1 - области отсутствия данных и суша; 2–8 - возраст: 2 - голоцен, плейстоцен, плиоцен (0–5 млн лет); 3 - миоцен (5–23 млн лет); 4 - олигоцен (23–38 млн лет); 5 - эоцен (38–53 млн лет); 6 - палеоцен (53–65 млн лет) 7 - мел (65–135 млн лет) 8 - юра (135–190 млн лет)

В конце 80-х гг. завершился еще один эксперимент по проверке движения литосферных плит. Он был основан на измерении базовых линий по отношению к далеким квазарам. На двух плитах выбирались точки, в которых, с использованием современных радиотелескопов, определялось расстояние до квазаров и угол их склонения, и, соответственно, рассчитывались расстояния между точками на двух плитах, т. е., определялась базовая линия. Точность определения составляла первые сантиметры. Через несколько лет измерения повторялись. Была получена очень хорошая сходимость результатов, рассчитанных по магнитным аномалиям, с данными, определенными по базовым линиям

Схема, иллюстрирующая результаты измерений взаимного перемещения литосферных плит, полученные методом интерферометрии со сверхдлинной базой - ИСДБ (Картер, Робертсон, 1987). Движение плит изменяет длину базовой линии между радиотелескопами, расположенными на разных плитах. На карте Северного полушария показаны базовые линии, на основании измерений которых по методу ИСДБ получено достаточное количество данных, чтобы сделать надежную оценку скорости изменения их длины (в сантиметрах в год). Числа в скобках указывают величину смещения плит, рассчитанную по теоретической модели. Почти во всех случаях расчетная и измеренная величины очень близки

Таким образом, тектоника литосферных плит за эти годы прошла проверку рядом независимых методов. Она признана мировым научным сообществом в качестве парадигмы геологии в настоящее время.

Зная положение полюсов и скорости современного перемещения литосферных плит, скорости раздвижения и поглощения океанического дна, можно наметить путь движения континентов в будущем и представить их положение на какой-то отрезок времени.

Такой прогноз был сделан американскими геологами Р. Дитцем и Дж. Холденом. Через 50 млн. лет, по их предположениям, Атлантический и Индийский океаны разрастутся за счет Тихого, Африка сместится на север и благодаря этому постепенно ликвидируется Средиземное море. Гибралтарский пролив исчезнет, а «повернувшаяся» Испания закроет Бискайский залив. Африка будет расколота великими африканскими разломами и восточная ее часть сместится на северо-восток. Красное море настолько расширится, что отделит Синайский полуостров от Африки, Аравия переместится на северо-восток и закроет Персидский залив. Индия все сильнее будет надвигаться на Азию, а значит, Гималайские горы будут расти. Калифорния по разлому Сан-Андреас отделится от Северной Америки, и на этом месте начнет формироваться новый океанический бассейн. Значительные изменения произойдут в южном полушарии. Австралия пересечет экватор и придет в соприкосновение с Евразией. Этот прогноз требует значительного уточнения. Многое здесь еще остается дискуссионным и неясным.

источники

http://www.pegmatite.ru/My_Collection/mineralogy/6tr.htm

http://www.grandars.ru/shkola/geografiya/dvizhenie-litosfernyh-plit.html

http://kafgeo.igpu.ru/web-text-books/geology/platehistory.htm

http://stepnoy-sledopyt.narod.ru/geologia/dvizh/dvizh.htm

А я вам давайте напомню , а вот интересные и вот такой . Посмотрите на и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Литосферные плиты имеют высокую жесткость и способны в течение продолжительного времени сохранять без изменений свое строение и форму при отсутствии воздействий со стороны.

Движение плит

Литосферные плиты находятся в постоянном движении. Это движение, происходящее в верхних слоях , обусловлено наличием присутствующих в мантии конвективных течений. Отдельно взятые литосферные плиты сближаются, расходятся и скользят относительно друг друга. При сближении плит возникают зоны сжатия и последующее надвигание (обдукция) одной из плит на соседнюю, или поддвигание (субдукция) расположенных рядом образований. При расхождении появляются зоны растяжения с характерными трещинами, возникающими вдоль границ. При скольжении образуются разломы, в плоскости которых наблюдается близлежащих плит.

Результаты движения

В областях схождения огромных континентальных плит, при их столкновении, возникают горные массивы. Подобным образом, в свое время возникла горная система Гималаи, образовавшаяся на границе Индо-Австралийской и Евразийской плит. Результатом столкновения океанических литосферных плит с континентальными образованиями являются островные дуги и глубоководные впадины.

В осевых зонах срединно-океанических хребтов возникают рифты (от англ. Rift – разлом, трещина, расщелина) характерной структуры. Подобные образования линейной тектонической структуры земной коры, имеющие протяженность сотни и тысячи километров, с шириной в десятки или сотни километров, возникают в результате горизонтальных растяжений земной коры. Рифты очень крупных размеров принято называть рифтовыми системами, поясами или зонами.

В виду того, что каждая литосферная плита является единой пластиной, в ее разломах наблюдается повышенная сейсмическая активность и вулканизм. Данные источники расположены в пределах достаточно узких зон, в плоскости которых возникают трения и взаимные перемещения соседних плит. Эти зоны называются сейсмическими поясами. Глубоководные желоба, срединно-океанические хребты и рифы представляют собой подвижные области земной коры, они расположены на границах отдельных литосферных плит. Это лишний раз подтверждает, что ход процесса формирования земной коры в данных местах и в настоящее время продолжается достаточно интенсивно.

Важность теории литосферных плит отрицать нельзя. Так как именно она способна объяснить наличие в одних областях Земли гор, в других – . Теория литосферных плит позволяет объяснить и предусмотреть возникновение катастрофических явлений, способных возникнуть в районе их границ.

Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым "чехлом". Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты - это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки - это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит - это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров - на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде "Геодинамика", в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне "ядро-мантия" происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления - в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.