Что такое марганец? Свойства марганца. Применение марганца


Принадлежит VII группе. Расположен в четвертом периоде между хромом и железом. Имеет 25-й атомный номер. Формула марганца 3d 5 4s 2 .

Был открыт в 1774 году. Атом марганца весит 54,938045. Содержит изотоп 55Mn, а природный марганец состоит полностью из него. Степень окисления металла колеблется от 2 до 7. Электроотрицательность Mn — 1,55. Переходный материал.

Соединения марганец 2 образуют оксид и диоксид. Проявляют основные свойства элемента. Образования марганец 3 и марганец 4 отличаются амфотерными свойствами. В комбинациях металла 6 и 7 лидируют свойства кислоты марганца . Элемент № 25 образует многочисленные виды солей и различные бинарные соединения.

Добыча марганца ведется повсеместно как в России, так и в ближнем зарубежье. На Украине существует особый Марганец – город , расположенный на многочисленных образованиях марганцевой руды.

Описание и свойства марганца

Серебристо-белый цвет с легким серым налетом выделяет марганец. Состав элемента имеет примесь углерода, которая дает ему серебристо-белый цвет. Он превосходит железо по твердости и хрупкости. В виде мелких абразивов пирофорен.

При взаимодействии с воздушной средой происходит окисление марганца . Покрывается оксидной пленкой, защищающей его от последующей окислительной реакции.

Растворяется в воде, полностью поглощает водород, не вступая в реакцию с ним. В процессе нагревания сгорает в кислороде. Активно реагирует с хлором и серой. При взаимодействии с кислотными окислителями образует соли марганца .

Плотность — 7200 кг/м3, t плавления — 1247°С, t кипения — 2150 °С. Удельная теплоемкость — 0,478 кДж. Обладает электрической проводимостью. Контактируя с хлором, бромом и йодом образует дигалогениды.

При высоких температурах вступает во взаимодействие с азотом, фосфором, кремнием и бором. Медленно взаимодействует с холодной водой. В процессе нагревания реакционная способность элемента возрастает. На выходе образуется Mn(OH)2 и водород. При соединении марганца с кислородом образуется оксид марганца . Выделяют семь его групп:

Оксид марганца (II). Монооксид. Не взаимодействует с водой. Легко окисляется, образуя хрупкую корку. При нагревании с водородом и металлами активной группы восстанавливается до марганца. Имеет зеленый и серо-зеленый цвет кристаллов. Полупроводник.

Оксид марганца (II,III). Кристаллы коричневого – черного цвета Mn3O4. Парамагнетик. В естественной среде встречается как минерал гаусманит.

Оксид марганца (II,IV). Соединение неорганического характера Mn5O8. Может рассматриваться как ортоманганит марганца . Не растворяется в H 2 O.

Оксид марганца (III).Кристаллы коричневого – черного цвета Mn2O3. Не вступают в реакцию с водой. Встречается в природной среде в минералах браунит, курнакит и биксбиит.

Оксид марганца (IV) или диоксид марганца MnO2. Нерастворимый в воде порошок темно-коричневого оттенка. Устойчивое образование марганца. Содержится в минерале пиролюзит. Поглощает хлор и соли тяжелых металлов.

Оксид марганца (VI) . Темно-красный аморфный элемент. Вступает в реакцию с водой. Полностью разлагается при нагревании. Щелочные реакции образуют солевые отложения.

Оксид марганца (VII). Маслянистая зеленовато-бурая жидкость Mn2O7. Сильный окислитель. При контакте с горючими смесями, мгновенно воспламеняет их. Может взорваться от толчка, резкой и яркой вспышки света, взаимодействия с органическими компонентами. При взаимодействии с Н 2 O образует марганцовую кислоту.

Соли марганца являются катализаторами окислительных процессов, происходящих с участием кислорода. Они применяются в сиккативах. Льняное масло с добавлением такого сиккатива именуется олифой.

Применение марганца

Mn широко используют в черной металлургии. Добавляют сплав железо марганец (ферромарганец). Доля марганца в нем равна 70-80%, углерода 0,5-7 %, остальная часть приходится на железо и посторонние примеси. Элемент №25 в сталеплавлении соединяет кислород и серу.

Используются смеси хром — марганец , -марганец, кремний-марганец. В производстве стали марганцу альтернативной замены нет.

Химический элемент выполняет множество функций, в том числе рафинирует и раскисляет сталь. Широко используется технология цинк марганец . Растворимость Zn в магнии составляет 2 %, а прочность стали, в этом случае, возрастает до 40 %.

В доменной шахте марганец удаляет серный налет из чугуна. В технике применяются тройные сплавы манганины, куда входит марганец медь и никель. Материал характеризуется большим электро-сопротивлением на которое влияет не температура, а сила давления.

Используется для изготовления манометров. Настоящей ценностью для промышленности является сплав медь — марганец. Содержание марганца здесь 70 %, меди 30%. Его применяют для снижения вредных производственных шумов. В изготовлении взрыв-пакетов для праздничных мероприятий используют смесь, куда входят такие элементы, как магний марганец . Магний широко используется в самолетостроении.

Некоторые виды солей марганца, такие как KMnO4 нашли свое применение в медицинской отрасли. Перманганат калия относится к солям марганцовой кислоты. Имеет вид темно-фиолетовых . Растворяется в водной среде, окрашивая её в фиолетовый цвет.

Является сильным окислителем. Антисептик, обладает противомикробными свойствами. Марганец в воде легко окисляется, образуя плохо растворимый оксид марганца коричневого цвета.

При соприкосновении с белком ткани формирует соединения с выраженными вяжущими качествами. В высоких концентрациях раствор марганца обладает раздражающим и прижигающим действием.

Калий марганец используют для лечения некоторых заболеваний и для оказания первой помощи, а пузырек с кристаллами марганцовки находится в каждой аптечки.

Марганец полезен для человеческого здоровья. Участвует в формировании и развитии клеток центрально-нервной системы. Способствует усвоению витамина В1, и железа. Регулирует содержание сахара в крови. Задействуется в строительстве костной ткани.

Участвует в образовании жирных кислот. Улучшает рефлекторные способности, память, убирает нервное напряжение, раздражительность. Абсорбируясь в стенках кишечника марганец, витамины В, Е, фосфор, кальций усиливают этот процесс, влияет на организм и обменные процессы в целом.

Минералы, незаменимые для человека, такие как кальций, магний, марганец , медь, калий, железо добавляют в витаминно-минеральные комплексы для устранения витаминного дефицита.

Также микроэлементы цинк, марганец и железо играют огромную роль в жизни растений. Входят в состав фосфорных и минеральных удобрений.

Цена марганца

Металлический марганец содержит до 95 % чистого марганца. Его применяют в сталелитейной металлургической промышленности. Удаляет из стали ненужные примеси и наделяет её легирующими качествами.

Ферромарганец используется для раскисления сплава во время процесса плавления, путем удаления из него кислорода. Связывает частицы серы между собой, улучшая качественные характеристики стали. Марганец упрочняет материал, делает его более износостойким.

Применяют металл при создании шаровых мельниц, землеройных и камнедробильных машин, броневых элементов. Из сплава мангадин изготавливают реостаты. Элемент № 25 добавляют в бронзу и .

Большой процент диоксида марганца потребляется для создания гальванических элементов. с добавлением Mn задействуется в тонком органическом и промышленном синтезе. Соединения MnO2 и KMnO4 выступают окислителями.

Марганец – вещество незаменимое в черной металлургии. Уникален по своим физическим и химическим характеристикам. Марганец купить можно в специализированных торговых точках. Пять килограмм металла стоит порядка 150 рублей, а тонна, в зависимости вида соединения, стоит около 100-200 тысяч рублей.

MnО, Mn 2 О 3 , MnО 2 , Mn 3 О 4 , Mn 2 О 7 , Mn 5 О 8 . Кроме Mn 2 О 7 , все оксиды - кристаллы, не раств. в воде. При нагр. высших оксидов отщепляется О 2 и образуются низшие оксиды:

При выдерживании на воздухе или в атмосфере О 2 выше 300 °С MnО и Mn 2 О 3 окисляются до MnО 2 . Безводные и гидратир. оксиды Mn входят в состав марганцевых и железо-марганцевых руд в виде минералов пиролюзита b-MnО 2 , псиломелана mМО.nMnО 2 .хН 2 О [М = Ва, Са, К, Mn(Н)], манганита b-MnOOH (Mn 2 О 3 .Н 2 О), гроутита g-MnOOH, браунита 3Mn 2 O 3 .MnSiO 3 и др. с содержанием MnО 2 60-70%. Переработка марганцевых руд включает мокрое обогащение и послед. хим. выделение оксидов MnО 2 или Mn 2 О 3 методами сульфитизации и сульфатизации, карбонизации, восстановит. обжига и др. Монооксид MnО (минерал манганозит). До Ч 155,3 °С устойчива гексагoн. модификация, выше - кубическая (см. табл.). Полупроводник. Антиферромагнетик с точкой Нееля 122 К; магн. восприимчивость + 4,85.10 - 3 (293 К). Обладает слабоосновными св-вами; восстанавливается до Mn водородом и активными металлами при нагревании. При взаимод. MnО с к-тами образуются соли Mn(II), с расплавом NaOH при 700-800°С и избытке O 2 - Na 3 MnO 4 , при действии (NH 4) 2 S - сульфид MnS. Получают разложением Mn(OH) 2 , Mn(C 2 O 4), Mn(NO 3) 2 или MnСО 3 в инертной атмосфере при 300 °С, контролируемым восстановлением MnО 2 или Mn 2 О 3 водородом или СО при 700-900 °С. Компонент ферритов и др. керамич. материалов, шлака для десульфуризации металлов, микроудобрений, катализатор дегидрогенизации пиперидина, антиферромагн. материал. Сесквиоксид Mn 2 О 3 существует в двух модификациях - ромбич. a (минерал курнакит) и кубич. b (минерал биксбиит), т-ра перехода a: b 670 °С; парамагнетик, магн. восприимчивость +1,41Х10 - 5 (293 К); восстанавливается Н 2 при 300°С до MnО, алюминием при нагр. - до Mn.


Под действием разб. H 2 SO 4 и HNO 3 переходит в MnО 2 и соль Mn(II). Получают Mn 2 О 3 термич. разложением MnООН. Оксид марганца (II, III) Mn 3 О 4 (минерал гаусманит); a-Mn 3 О 4 при 1160°С переходит в b-Mn 3 О 4 с кубич. кристаллич. решеткой; DH 0 перехода a: b 20,9 кДж/моль; парамагнетик, магн. восприимчивость + 1,24.10 - 5 (298 К). Проявляет хим. св-ва, присущие MnО и Mn 2 О 3 . Диоксид MnО 2 - самое распространенное соед. Mn в природе; наиб. устойчива b-модификация (минерал пиролюзит). Известны ромбич. g-MnО 2 (минерал рамсделит, или полианит), а также a, d и e, рассматриваемые как твердые р-ры разл. форм MnО 2 . Парамагнетик, магн. восприимчивость + 2,28.10 - 3 (293 К). Диоксид Mn - нестехиометрич. соед., в его решетке всегда наблюдается недостаток кислорода. Амфотерен. Восстанавливается Н 2 до MnО при 170°С. При взаимод. с NH 3 образуются Н 2 О, N 2 и Mn 2 О 3 . Под действием О 2 в расплаве NaOH дает Na 2 MnO 4 , в среде конц. к-т - соответствующие соли Mn(IV), H 2 O и О 2 (или Cl 2 в случае соляной к-ты). Получают MnО 2 разложением Mn(NO 3) 2 или Mn(ОН) 2 при 200°С на воздухе, восстановлением КMnО 4 в нейтральной среде, электролизом солей Mn(II). Применяют для получения Mn и его соед., сиккативов, как деполяризатор в сухих элементах, компонент коричневого пигмента (умбры) для красок, для осветления стекла, как реагент для обнаружения Cl - , окислитель в гидрометаллургии Zn, Cu, U, компонент катализатора в гопкалитовых патронах и др. Активный MnО 2 , получаемый взаимод. водных р-ров MnSO 4 и КMnО 4 , -окислитель в орг. химии. Оксид марганца (VII) Mn 2 О 7 (гептаоксид димарганца, марганцевый ангидрид) - маслянистая зеленая жидкость; т. пл. 5,9 °С; плотн. 2,40 г/см 3 ; DH 0 обр -726,3 кДж/моль. Выше 50 °С при медленном нагревании начинает разлагаться с выделением О 2 и образованием низших оксидов, а при более высоких т-рах или высоких скоростях нагревания взрывается; крайне чувствителен к мех. и тепловым воздействиям. Сильный окислитель; при контакте с Mn 2 О 7 горючие в-ва воспламеняются. М. б. получен при взаимод. КMnО 4 с H Z SO 4 на холоду. Оксид Mn 5 О 8 , или Mn 2 II (Mn IV О 4) 3 , - твердое в-во; не раств. в воде; м. б. получен окислением MnО или Mn 3 О 4 ; легко разлагается на MnО 2 и О 2 . Из гидроксидов Mn стехиометрич. соед. являются только Mn(ОН) 2 , MnО(ОН) и НMnО 4 , другие представляют собой гидратир. оксиды переменного состава, близкие по хим. св-вам соответствующим оксидам. Кислотные св-ва гидроксидов увеличиваются с возрастанием степени окисления Mn: Mn(ОН) 2 < MnО(ОН) (или Mn 2 O 3 .xH 2 O) < MnO 2 .xН 2 О < Mn 3 О 4 .xН 2 О < Н 2 MnО 4 < НMnО 4 . Гидроксид Мn(II) практически не раств. в воде (0,0002 г в 100 г при 18 °С); основание средней силы; раств. в р-рах солей NH 4 ; на воздухе постепенно буреет в результате окисления до MnО 2 .xН 2 О. Гидроксиоксид Mn(III) MnO(OH) известен в двух модификациях; при 250 °С в вакууме обезвоживается до g-Mn 2 О 3 ; в воде не раств. Прир. манганит не разлагается HNO 3 и разб. H 2 SO 4 , но медленно реагирует с H 2 SO 3 , искусственно полученный легко разлагается минер. к-тами; окисляется О 2 до b-MnО 2 . См. также Манганаты. М. о. токсичны; ПДК см. в ст. Марганец. Лит.: Позин М. Е.. Технология минеральных солей, 4 изд., ч. 1 2, Л., 1974. П. М. Чукуров.

  • - Железобактерии известны очень давно...

    Биологическая энциклопедия

  • - сернокислый марганец, MnSO4, марганцевое микроудобрение. Кристаллич. в-во, растворимое в воде...

    Сельско-хозяйственный энциклопедический словарь

  • - MnСО 3, бледно-розовые кристаллы, в присут. О 2 и Н 2 О приобретают коричневый оттенок вследствие окисления; кристаллич. решетка гексагональная; плотн. 3.62 г/см 3; С 0p 94,8 Дж/; DH0 обр -881,7 кДж/моль; S0298109,5 Дж/...

    Химическая энциклопедия

  • - Декакарбонилдимарганец Mn2 10 - золотисто-желтые кристаллы; т. пл. 154 155°С; плотн. 1,75 г/см 3. Медленно разлагается на свету, разлагается на воздухе при 110 °С, сублимируется в вакууме при 50 °С. Раств...

    Химическая энциклопедия

  • - Mn2, бледно-розовые гигроскопичные кристаллы с кубич. решеткой; DH0 обр Ч574,6 кДж/моль. Разлагается выше 180°С до оксидов Mn. Р-римость в воде: 102,0 , 157,1 , 428,0 и 498,8 . Раств. также в диоксане, ТГФ, ацетонитриле...

    Химическая энциклопедия

  • - MnSO4, имеет т. пл. 700°С; С° р 100,24 Дж/; DG0 обр -958,11 кДж/моль; ниже 11 К антифсрромагнетик, выше 11 К парамагнетик, магн. восприимчивость + 1,366.10-6 ; см. также табл. Ок. 850°С разлагается на Mn3O4, SO3 и SO2...

    Химическая энциклопедия

  • - соединения хим. элементов с кислородом. Делятся на солеобразующие и несолеобразующие. Солеобразующие бывают основными, кислотными и амфотерными - их гидраты являются соотв...

    Естествознание. Энциклопедический словарь

  • - неорганические соединения, в которых КИСЛОРОД связан с другим элементом. Оксиды часто образуются при горении элемента на воздухе или в присутствии кислорода. Так, магний при горении образует оксид магния...

    Научно-технический энциклопедический словарь

Общий обзор

Марганец - элемент VIIB подгруппы IV-го периода. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 , наиболее характерные степени окисления в соединениях - от +2 до +7.

Марганец принадлежит к довольно распространенным элементам, составляя 0,1 % (массовая доля) земной коры. В природе встречается тoлько в виде соединений, основные минералы - пиролюзит (диоксид марганца MnO 2 .), гаусканит Mn 3 O 4 и браунит Mn 2 O 3 .

Физические свойства

Марганец - серебристо-белый твердый хрупкий металл. Его плотность 7,44 г/см 3 , температура плавления 1245 o С. Известны четыре кристаллические модификации марганца.

Химические свойства

Марганец – активный металл, ряду напряжений он находится между алюминием и цинком. На воздухе марганец покрывается тонкой оксидной пленкой, предохраняющей его от дальнейшего окисления даже при нагревании. В мелкораздробленном состоянии марганец окисляется легко.

3Mn + 2O 2 = Mn 3 O 4 – при прокаливаии на воздухе

Вода при комнатной температуре действует на марганец очень медленно, при нагревании - быстрее:

Mn + H 2 O = Mn(OH) 2 + H 2

Он растворяется в разбавленных соляной и азотной кислотах, а также в горячей серной кислоте (в холодной H 2 SO 4 он практически нерастворим):

Mn + 2HCl = MnCl 2 + H 2 Mn + H 2 SO 4 = MnSO 4 + H 2

Получение

Марганец получают:

1. электролизом раствора MnSО 4 . При электролитическом методе руду восстанавливают, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу.

2. восстановлением из его оксидов кремнием в электрических печах.

Применение

Марганец применяется:

1. в производстве легированных сталей. Марганцовистая сталь, содержащая до 15 % марганца, обладает высокими твердостью и прочностью.

2. марганец входит в состав ряда сплавов на основе магния; он повышает их стойкость против коррозии.

Оксиды магранца

Марганец образует четыре простых оксида - MnO , Mn 2 O 3 , MnO 2 и Mn 2 O 7 и смешанный оксид Mn 3 O 4 . Первые два оксида обладают основными свойствами, диоксид марганца MnO 2 амфотерен, а высший оксид Mn 2 O 7 является ангидридом марганцовой кислоты HMnO 4 . Известны также производные марганца (IV), но соответствующий оксид MnO 3 не получен.

Соединения марганца (II)

Степени окисления +2 соответствуют оксид марганца (II) MnO , гидроксид марганца Mn(OH) 2 и соли марганца (II).

Оксид марганца(II) получается в виде зеленого порошка при восстановлении других оксидов марганца водородом:

MnO 2 + H 2 = MnO + H 2 O

или при термическом разложении оксалата или карбоната марганца без доступа воздуха:

MnC 2 O 4 = MnO + CO + CO 2 MnCO 3 = MnO + CO 2

При действии щелочей на растворы солей марганца (II) выпадает белый осадок гидроксидa марганца Mn(OH)2:

MnCl 2 + NaOH = Mn(OH) 2 + 2NaCl

На воздухе он быстро темнеет, окисляясь в бурый гидроксид марганца(IV) Mn(OH)4:

2Mn(OH) 2 + O 2 + 2H 2 O =2 Mn(OH) 4

Оксид и гидроксид марганца (II) проявляют основные свойства, легко растворяются в кислотах:

Mn(OH)2 + 2HCl = MnCl 2 + 2H 2 O

Соли при марганца (II) образуются при растворении марганца в разбавленных кислотах:

Mn + H 2 SO 4 = MnSO 4 + H 2 - при нагревании

или при действии кислот на различные природные соединения марганца, например:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

В твердом виде соли марганца (II) розового цвета, растворы этих солей почти бесцветны.

При взаимодействии с окислителями все соединения марганца (II) проявляют восстановительные свойства.

Соединения марганца (IV)

Самым устойчивым соединением марганца (IV) является темно-бурый диоксид марганца MnO 2 . Он легко образуется как при окислении низших, так и при восстановлении высших соединений марганца.

MnO 2 - амфотерный оксид, но и кислотные, и основные свойства выражены у него очень слабо.

В кислой среде диоксид марганца –сильный окислитель. При нагревании сконцентрированными кислотами идут реакции:

2MnO 2 + 2H 2 SO 4 = 2MnSO 4 + O 2 + 2H 2 O MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

причем на первой стадии во второй реакции сначала образуется неустойчивый хлорид марганца (IV), который затем распадается:

MnCl 4 = MnCl 2 + Cl 2

При сплавлении MnO 2 со щелочами или основными оксидами получают манганиты, например:

MnO 2 +2KOH = K 2 MnO 3 + H 2 O

При взаимодействии MnO 2 с концентрированной серной кислотой образуется сульфат марганца MnSO 4 и выделяется кислород:

2Mn(OH) 4 + 2H2SO 4 = 2MnSO 4 + O 2 + 6H 2 O

Взаимодействие MnO 2 с более сильными окислителями приводит к образованию соединений марганца (VI) и (VII), например при сплавлении с хлоратом калия образуется манганат калия:

3MnO 2 + KClO 3 + 6KOH = 3K2MnO 4 + KCl + 3H 2 O

а при действии диоксида полония в присутствии азотной кислоты – марганцевая кислота:

2MnO 2 + 3PoO 2 + 6HNO 3 = 2HMnO 4 + 3Po(NO 3) 2 + 2H 2 O

Применение MnO 2

В качестве окислителя MnO 2 применяют при получении хлора из соляной кислоты и в сухих гальванических элементах.

Соединения марганца(VI) и (VII)

При сплавлении диоксида марганца с карбонатом и нитратом калия получается зеленый сплав, из которого можно выделить темно-зеленые кристаллы манганата калия K 2 MnO 4 - соли очень нестойкой марганцовистой кислоты H 2 MnO 4 :

MnO 2 + KNO 3 + K 2 CO 3 = K 2 MnO 4 + KNO 2 + CO 2

в водном растворе манганаты самопроизвольно превращаются в соли марганцовой кислоты HMnO4 (перманганаты) с одновременным образованием диоксида марганца:

3K 2 MnO 4 + H 2 O = 2KMnO 4 + MnO 2 + 4KOH

при этом цвет раствора меняется с зеленого на малиновый и образуется темно-бурый осадок. В присутствии щелочи манганаты устойчивы, в кислой среде переход манганата в перманганат происходит очень быстро.

При действии сильных окислителей (например, хлора) на раствор манганата последний полностью превращается в перманганат:

2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl

Перманганат калия KMnO 4 - наиболее известная соль марганцовой кислоты. Представляет собой темно-фиолетовые кристаллы, умеренно растворимые в воде.Как и все соединения марганца (VII), перманганат калия - сильный окислитель. Он легко окисляет многие органические вещества, превращает соли железа(II) в соли железа (III), сернистую кислоту окисляет в серную, из соляной кислоты выделяет хлор и т. д.

В окислительно-восстановительных реакциях KMnO 4 (ион MnO 4 - )может восстанавливаться в различной степени. В зависимости от рН среды продукт восстановления может представлять собою ион Mn 2+ (в кислой среде), MnO 2 (в нейтральной или в слабо щелочной среде) или ион MnO4 2- (в сильно щелочной среде), например:

KMnO4 + KNO 2 + KOH = K 2 MnO 4 + KNO 3 + H 2 O - в сильнощелочной среде 2KMnO 4 + 3KNO 2 + H 2 O = 2MnO 2 + 3KNO 3 + 2KOH – в нейтральной или слабощелочной 2KMnO 4 + 5KNO 2 + 3H 2 SO 4 = 2MnSO 4 + K 2 SO 4 + 5KNO 3 + 3H 2 O – в кислой среде

При нагревании в сухом виде перманганат калия уже при температуре около 200 o С разлагается согласно уравнению:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

Соответствующая перманганатам свободная марганцовая кислота HMnO 4 в безводном состоянии не получена и известна только в растворе. Концентрацию ее раствора можно довести до 20%. HMnO 4 - очень сильная кислота, в водном растворе полностью диссоциированная на ионы.

Оксид марганца (VII), или марганцовый ангидрид, Mn 2 O 7 может быть получен действием концентрированной серной кислоты на перманганат калия: 2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + H 2 O

Марганцовый ангидрид - зеленовато-бурая маслянистая жидкость. Очень неустойчив: при нагревании или при соприкосновении с горючими веществами он со взрывом разлагается на диоксид марганца и кислород.

Как энергичный окислитель перманганат калия широко применяют в химических лабораториях и производствах, он служит также дезинфицирующим средством, Реакцией термического разложения перманганата калия пользуются в лаборатории для получения кислорода.


ОПРЕДЕЛЕНИЕ

Оксид марганца (IV) в обычных условиях представляет собой кристаллы черного цвета с коричневым оттенком, которые разлагаются при нагревании (рис. 1).

Брутто-формула - MnO 2 . Молярная масса оксида марганца (IV) равна 86,94 г/моль.

Рис. 1. Оксид марганца (IV). Внешний вид.

Не реагирует с водой. Из раствора осаждается гидрат MnO 2 ×nH 2 O. Переводится в раствор действием концентрированных кислот. Проявляет окислительно-восстановительные свойства. Является самым распространенным соединением марганца в природе.

Химическая формула оксида марганца 4

Химическая формула оксида марганца (IV) MnO 2 . Она показывает, что в состав данной молекулы входит один атом марганца (Ar = 55а.е.м) и два атома кислорода (Ar = 16 а.е.м.). По химической формуле можно вычислить молекулярную массу оксида марганца (IV):

Mr(MnO 2) = Ar(Mn) + 2×Ar(O);

Mr(MnO 2) = 55 + 2×16 = 55 + 32 = 87.

Графическая (структурная) формула оксида марганца 4

Структурная (графическая) формула оксида марганца (IV) является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы:

Примеры решения задач

ПРИМЕР 1

Задание Составьте формулы двух оксидов железа, если массовые доли железа в них 77,8% и 70,0%.
Решение

Найдем массовую долю в каждом из оксидов меди:

ω 1 (О) = 100% — ω 1 (Fe) = 100% — 77,8% = 22,2%;

ω 2 (О) = 100% — ω 2 (Fe) = 100% — 70,0% = 30,0%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (железо) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева округлим до целых чисел):

x:y = ω 1 (Fe)/Ar(Fe) : ω 1 (O)/Ar(O);

x:y = 77,8/56: 22,2/16;

x:y = 1,39: 1,39 = 1: 1.

Значит формула первого оксида железа будет иметь вид FeO.

x:y = ω 2 (Fe)/Ar(Fe) : ω 2 (O)/Ar(O);

x:y = 70/56: 30/16;

x:y = 1,25: 1,875 = 1: 1,5 = 2: 3.

Значит формула второго оксида железа будет иметь вид Fe 2 O 3 .

Ответ FeO, Fe 2 O 3

ПРИМЕР 2

Задание Составьте формулу соединения водорода, йода и кислорода, если массовые доли элементов в нём: ω(H) = 2,2%, ω(I) = 55,7%, ω(O) = 42,1%.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (водород), «у» (йод), «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(H)/Ar(H) : ω(I)/Ar(I) : ω(O)/Ar(O);

x:y:z= 2,2/1: 55,7/127: 42,1/16;

x:y:z= 2,2: 0,44: 2,63 = 5: 1: 6.

Значит формула соединения водорода, йода и кислорода будет иметь вид H 5 IO 6 .

Ответ H 5 IO 6

Получение

  • · В природе встречаются минералы браунит, курнакит и биксбиит -- оксид марганца с различными примесями.
  • · Окисление оксида марганца(II):
  • · Восстановление оксида марганца(IV):

Физические свойства

Оксид марганца(III) образует коричнево-чёрные кристаллы нескольких модификаций:

  • · б-Mn2O3, ромбическая сингония, минерал курнакит;
  • · в-Mn2O3, кубическая сингония, пространственная группа I a3, параметры ячейки a = 0,941 нм, Z = 16, минералбиксбиит;
  • · г-Mn2O3, тетрагональная сингония, параметры ячейки a = 0,57 нм, c = 0,94 нм.

Не растворяется в воде.

Парамагнетик.

Химические свойства

Разлагается при нагревании:

  • · Восстанавливается водородом:
  • · При растворении в кислотах -- диспропорционирует:
  • · При сплавлении с оксидами металлов образует соли манганиты:

Оксид марганца(IV)

Таблица 6. Оксид марганца(IV).

Химические свойства

При обычных условиях ведет себя довольно инертно. При нагревании с кислотами проявляет окислительные свойства, например, окисляет концентрированную соляную кислоту до хлора:

С серной и азотной кислотами MnO2 разлагается с выделением кислорода:

При взаимодействии с сильными окислителями диоксид марганца окисляется до соединений Mn7+ и Mn6+:

Диоксид марганца проявляет амфотерные свойства. Так, при окислении сернокислого раствора соли MnSO4перманганатом калия в присутствии серной кислоты образуется чёрный осадок соли Mn(SO4)2.

При сплавлении с щелочами и основными оксидами MnO2 выступает в роли кислотного оксида, образуя соли манганиты:

Является катализатором разложения пероксида водорода:

Получение

В лабораторных условиях получают термическим разложением перманганата калия:

Также можно получить реакцией перманганата калия с пероксидом водорода. На практике образовавшийся MnO2каталитически разлагает пероксид водорода, вследствие чего реакция до конца не протекает.

При температуре выше 100 °C восстановлением перманганата калия водородом:

Оксид марганца(VII)

  • · Оксид марганца(VII) Mn2O7 -- зеленовато-бурая маслянистая жидкость (tпл=5,9 °C), неустойчив при комнатной температуре; сильный окислитель, при соприкосновении с горючими веществами воспламеняет их, возможно со взрывом. Взрывается от толчка, от яркой вспышки света, при взаимодействии с органическими веществами. Получить оксид марганца(VII) Mn2O7 можно действием концентрированной серной кислоты на перманганат калия:
  • · Полученный оксид марганца(VII) неустойчив и разлагается на оксид марганца(IV) и кислород:
  • · Одновременно выделяется озон:
  • · Оксид марганца(VII) взаимодействует с водой, образуя марганцовую кислоту:

Оксид марганца(VI)

Таблица 7. Оксид марганца(VI).

Оксид марганца(VI) -- неорганическое соединение, окисел металла марганца с формулой MnO3, тёмно-красное аморфное вещество, реагирует с водой.

диоксид марганец получение химический

Получение

· Образуется при конденсации фиолетовых паров, выделяемых при нагревании раствора перманганата калия всерной кислоте:

Физические свойства

Оксид марганца(VI) образует тёмно-красное аморфное вещество.

Химические свойства

  • · Разлагается при нагревании:
  • · Реагирует с водой:
  • · С щелочами образует соли -- манганаты:

Закономерности изменения свойств оксидов марганца

Наиболее устойчивыми являются MnO2, Mn2O3 и Мn3О4 (смешанный оксид - тримарганца тетраоксид).

Свойства оксидов марганца зависят от степени окисления металла: с увеличением степени окисления усиливаются кислотные свойства:

MnO > Мn2О3 > MnO2 >Мn2О7

Оксиды марганца проявляют окислительные или восстановительные свойства в зависимости от степени окисления металла: высшие оксиды - окислители и восстанавливаются до MnO2, низшие оксиды - восстановители, окисляясь, образуют МnO2. Таким образом, МnО2 - самый устойчивый оксид.

способы получения диоксида марганца

Изобретение относится к области металлургии, конкретнее, к получению высококачественных оксидов марганца, которые могут найти широкое применение в химической и металлургической промышленности. Способ получения диоксида марганца включает растворение марганецсодержащего сырья в азотной кислоте с получением раствора нитратов марганца и нитратов присутствующих в руде примесей кальция, калия, магния, натрия. Затем проводят термическое разложение нитратов в автоклаве. Термическое разложение ведут при постоянном снижении давления в автоклаве, начиная от давления 0,6 МПа и снижая его к концу процесса до 0,15 МПа. При этом пульпу при термическом разложении непрерывно перемешивают мешалкой, вращающейся со скоростью 1-15 об/мин и с наложением на нее вибрации с частотой 20-50 герц. Способ может быть внедрен на предприятиях химического профиля, имеющих в своем составе автоклавы, работающие под давлением. Техническим результатом изобретения является получение диоксида марганца повышенного качества. 2 табл., 2 пр.

Изобретение относится к области черной металлургии, конкретнее, к получению высококачественного диоксида марганца, который может найти широкое применение в химической и металлургической промышленности, в частности при производстве электролитического и электротермического марганца, среднеуглеродистого ферромарганца, низкофосфористых лигатур на его основе.

Из технической литературы известно несколько способов получения чистого диоксида марганца: химические, гидрометаллургические, пирогидрометаллургические и пирометаллургические.

Основными требованиями, которые предъявляются к химическим методам получения диоксида марганца, являются:

  • - эффективность удаления фосфора и пустой породы;
  • - простота аппаратурного оформления;
  • - высокая производительность;
  • - доступность и дешевизна реагентов.

Известен способ получения чистого диоксида марганца сернокислотным методом. Сущность метода заключается в следующем: через приготовленную из руды и раствора дитионата кальция суспензию (Т:Ж=1:4) пропускается сернистый газ, содержащий сернистый (SO2) и серный (SO3) ангидриды. Растворение этих газов в воде приводит к образованию сернистой и серной кислот. В сернистой кислоте интенсивно растворяются оксиды марганца с образованием марганцевой соли дитионатной кислоты и сульфата марганца по реакциям: MnO2+2SO2 =MnS2O6; MnO2+SO2 =MnSO4.

В присутствии избытка дитионата кальция происходит осаждение сульфата кальция и образование дитионата марганца: MnSO4+CaS2O6=MnS 2O6+CaSO4

Выщелоченную пульпу нейтрализуют известковым молоком до рН 4-5, затем она аэрируется для окисления закиси железа и удаления диоксида серы. В осадок выпадают: трехвалентное железо, фосфор, алюминий, кремнезем. Осадок отфильтровывают, промывают горячей водой и направляют в отвал. Из очищенного раствора добавлением негашеной извести осаждают марганец в виде гидрооксида, при этом вновь получают дитионат кальция, который возвращают в процесс:

MnS2O6+Са(ОН)2=Мn(OH) 2+CaS2O6.

Осадок гидрооксида марганца отфильтровывают, промывают, сушат и прокаливают. Прокаленный концентрат содержит, %: 92 - MnO2, 1,5 - SiO2 , 4,0 - CaO, 0,02 - P2O5 и 0,5-3 - SO 2 (М.И.Гасик. Металлургия марганца. Киев: Техника, 1979 г., стр.55-56).

Недостатками известного способа получения диоксида марганца являются:

  • - сложность аппаратурного оформления;
  • - продукт загрязнен пустой породой (SiO2, CaO и др.);
  • - высокая концентрация серы в конечном продукте (от 0,5 до 3%).

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является способ получения диоксида марганца термическим разложением нитрата марганца в присутствии нитратов кальция, магния, калия и натрия, согласно которому разложение проводят при давлении 0,15-1,0 МПа (Авторское свидетельство № 1102819, кл. C22B 47/00; C01G 45/02, приоритет от 20.05.83, опубл. 15.07.84, бюл. № 26).

Согласно способу-прототипу получение диоксида марганца в присутствии нитратов кальция, магния, калия и натрия, разложение проводят при давлении 0,15-1,0 МПа.

Технологические параметры и свойства способа-прототипа:

  • - температура разложения, °С - 170-190;
  • - скорость образования диоксида марганца, кг/м3ч - 500-700;
  • - степень разложения Mn(NO3)2 , % от исходного количества - 78-87;
  • - условия выгрузки пульпы из реактора - самотеком;
  • - содержание влаги в оксидах азота, % - 19-25;
  • - энергозатраты, МДж/кг - 1,7-2,2;
  • - содержание MnO2 в диоксиде марганца, % - 99,5.

Недостатками известного способа являются низкая скорость разложения нитрата марганца, большие энергозатраты, высокое количество воды в получаемых окислах азота.

Задачей настоящего изобретения является упрощение технологии получения диоксида марганца, повышение скорости разложения и выхода продукта.

Поставленная задача достигается тем, что процесс термического разложения ведут при постепенном снижении давления в автоклаве, начиная от давления 0,6 МПа и снижая его к концу процесса до 0,15 МПа, при этом пульпу непрерывно обрабатывают мешалкой, вращающейся со скоростью 1-15 об/мин; при этом в процессе термического разложения на вращающуюся мешалку накладывают вибрацию с частотой 20-50 герц.

Верхнее значение давления для термического разложения нитратов определяется условиями переработки оксидов азота в кислоту (оно проводится при давлении, не превышающем 0,6 МПа), а нижний предел - практической целесообразностью. Постепенное снижение давления до 0,15 МПа обеспечивает более полное термическое разложение нитратов марганца.

Уменьшение скорости вращения мешалки ниже 1 об/мин не обеспечивает получения гомогенного раствора пульпы. Увеличение скорости вращения выше 15 об/мин приводит к расслоению пульпы и появлению участков с более высокой концентрацией воды (из-за разницы в плотностях).

Более низкие частоты вибрации - ниже 20 герц, налагаемые на мешалку, практически не влияют на показатели термического разложения нитрата марганца. Увеличение частоты вибрации выше 50 герц экономически не оправдано.

При соблюдении этих условий повышается не только скорость разложения нитрата марганца, но и сам процесс в целом становится более технологичным. Установлено, что в предлагаемом процессе выход пульпы не сильно зависит от ее физических свойств, что значительно упрощает процесс ее выгрузки из реактора, при этом оксиды азота содержат более низкие концентрации воды и могут быть легко переработаны обратно в кислоту. В таблице 1 представлены сравнительные данные технологических параметров получения диоксида марганца по известному и предлагаемому способам. Показатели (усредненные) по предлагаемому способу получения диоксида марганца, представленные в таблице 8, взяты на основании результатов проведенных экспериментов (пример 1).

Таблица 8

Технологические параметры и свойства

Известный

Предлагаемый

Температура разложения, °C

Давление, МПа

Постепенное снижение давления от 0,6 до 0,15

Скорость образования диоксида марганца, кг/м3ч

Время, необходимое для образования 200 кг диоксида марганца, ч

Степень разложения Mn(NO3)2, в % от исходного количества

Условия выгрузки пульпы из реактора

Самотеком

Самотеком

Энергозатраты, МДж/кг MnO2

Скорость вращения мешалки, об./мин.

При термическом разложении на вращающуюся мешалку накладывалась вибрация частотой 30 герц - степень разложения Mn(NO3)2 увеличивается на 2-3,5%.

Физико-химические свойства порошка:

  • - плотность - 5,10 г/см3;
  • - содержание MnO2 - 99,6 вес.%;
  • - содержание Fe - менее 3Ч10-4 вес.%,
  • - содержание Р - не более 5Ч10-3 вес.%;
  • - Н 2O - не более 3Ч10-2 вес.%.

Ниже приведены примеры, не исключающие других, в объеме формулы изобретения.

В автоклав загрузили 1,5 кг раствора нитратов следующего состава, вес.%: 40,15 Mn(NO3)2; 25,7 Ca(NO3) 2; 7,3 Mg(NO3)2; 9,2 KNO3 ; 5,7 NaNO3; 15,0 Н2O.

Вес удаленной при термическом разложении воды определяли по разности ее веса в исходном растворе и в жидкой фазе пульпы. Количество выделившихся окислов азота определяли по стехиометрии реакции термического разложения нитрата марганца в соответствии с полученным количеством MnO2. Основные результаты проведенных экспериментов представлены в таблице 9.

Таблица 9

Параметры

Примеры конкретного выполнения

Известный способ

Предлагаемый способ

Температура разложения, C°

Давление, МПа*

Скорость вращения мешалки, об/мин

Частота вибрации, Гц

Время разложения, мин

Скорость образования MnO2, кг/м3ч

Объем выделившихся газов, м3 на 1 кг MnO2

Выход сухого диоксида марганца, %

Верхний предел давления для термического разложения нитратов определяется условиями переработки окислов азота в кислоту

Получен диоксид марганца следующего состава, вес.%: MnO2 - 99,6; Р<0,005; S<0,05; SiO2<0,1; (К, Mg, Na, Ca)<0,1.

Таким образом, предлагаемый способ обеспечивает не только более быстрое разложение нитрата марганца, но и значительно упрощает технологию производства MnO2, как на стадии выгрузки, так и на стадии регенерации окислов азота; при этом значительно снижаются расходы по переделам. Выход полученного сухого диоксида марганца составляет 84-92% против 78% (по известному способу) от теоретически возможного.

Полученный диоксид марганца использован для выплавки металлического марганца внепечным процессом.

Шихта имела состав, кг:

  • - MnO2 - 10;
  • - Al - 4,9;
  • - СаО - 0,6.

Всего 15,5 кг.

Шихту смешали, загрузили в плавильную шахту и с помощью запала подожгли. Продолжительность плавки составляла 2,4 мин. Получили 5,25 кг металлического марганца состава. % Мn 98,9; Аl 0,96; Р - следы (менее 0,005%) и 9,3 кг шлака состава, вес.%: МnО 14,6; Al2О3 68,3; СаО 18,0.

Извлечение марганца в сплав составило - 85,0%.

Шлак от выплавки металлического марганца можно использовать как исходное сырье (взамен бокситов) при получении алюминия.

Применение предлагаемого изобретения позволит решить проблему использования значительных запасов бедных марганцевых руд, в частности карбонатных руд Усинского месторождения или железомарганцевых конкреций, обогащение которых любыми другими способами в настоящее время нерентабельно.

Полученные марганцевые сплавы отличаются высокой концентрацией ведущего элемента (марганца) и низким содержанием вредных примесей (фосфора и углерода).

Применение марганцевых ферросплавов при выплавке качественных марок сталей приводит к снижению металлоемкости конструкций, упрощает процесс легирования и обеспечивает значительный экономический эффект.

Производство марганцевых концентратов химическими методами значительно снизит дефицит в стране в марганцевых ферросплавах, а его производство может быть организовано на химических заводах.

Предлагаемый способ получения диоксида марганца может быть организован на предприятиях, имеющих возможность утилизировать окислы азота.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения диоксида марганца термическим разложением, включающий растворение марганецсодержащего сырья в азотной кислоте с получением раствора нитратов марганца и нитратов, присутствующих в руде примесей кальция, калия, магния, натрия, и последующее термическое разложение нитратов в автоклаве, отличающийся тем, что термическое разложение ведут при постоянном снижении давления в автоклаве, начиная от давления 0,6 МПа и снижая его к концу процесса до 0,15 МПа, при этом пульпу непрерывно обрабатывают мешалкой, вращающейся со скоростью 1-15 об/мин и с наложением на нее вибрации с частотой 20-50 Гц.

Экспериментальная часть

Вышеперечисленные опыты применяются на больших предприятиях.

Я же хочу рассмотреть лабораторный способ получения диоксида марганца в диоксиде олова.

Принадлежности:

  • 1. Фарфоровый тигель:
  • 2. Стеклянный фильтр.

Суть способа: Получение твердых оксидов путем термического разложения смеси SnC2O4*H2O и MnSO4*5H2O, прокаливанием на воздухе.

Предварительный синтез SnC2O4*H2O.

Для получения оксалата олова взяли 10 г сульфата олова, 4,975 г оксалата аммония. Приготовили растворы обоих веществ, для этого сульфат олова растворили в 100 мл воды, а оксалат аммония в 50 мл воды. Затем, к раствору сульфата олова прилили раствор оксалата аммония. Наблюдалось активное выпадение белого тонкодисперсного осадка (SnC2O4*H2O). Полученную взвесь отфильтровали на плотном стеклянном фильтре.

Уравнение реакции:

SnSO4* H2O +(NH4)2C2O4*H2O>SnC2O4*H2Ov+(NH4)2SO4 + H2O

В результате получили 7,934 г оксалата олова, при расчетной массе 9,675. Выход реакции составил 82,0 %.

По уравнениям реакции

MnSO4*5H2O >MnO + SO3 (г)+ 5 H2O(г) >MnO2.

SnC2O4*H2O >SnO + CO2 + H2O >SnO2

А) 7,5 % MnO2 / 92,5 % SnO2.

Для его получения взяли: 0,75 г. SnC2O4*H2O, 0,07 г. MnSO4*5H2O. (Так как количество сульфата марганца было значительно меньше количества оксалата аммония, для достижения большей однородности смеси после помещения ее в фарфоровый тигель добавили несколько капель воды. Затем смесь прокалили на горелке.). Режим прокаливания 900 °С 2 часа не дал результата (сохранился серовато-кремовый цвет смеси). В результате прокаливания при режиме 1200 °С 2 часа образец приобрел ярко-красный цвет. Масса образца 0,5 г.

  • Б) 15 % MnO2 / 85 % SnO2. (0,761 г. SnC2O4*H2O, 0,088 г. MnSO4*5H2O) Масса образца 0,53 г.
  • В) 22 % MnO2 / 78 % SnO2. (0,67 г. SnC2O4*H2O, 0,204 г. MnSO4*5H2O). Масса образца 0,52 г.
  • Г) 28 % MnO2 / 72 % SnO2 (0,67 г. SnC2O4*H2O, 0,2911 г. MnSO4*5H2O). Масса образца 0,56 г.